Leibnitz's Rules
Integral Calculus

86765 \(\int_{-100}^{100} f(x) d x\) is equal to

1 \(\int_{-100}^{100} f\left(\mathrm{x}^{2}\right) \mathrm{dx}\)
2 \(\int_{-100}^{100} f\left(-\mathrm{x}^{2}\right) \mathrm{dx}\)
3 \(\int_{-100}^{100} f\left(\frac{1}{\mathrm{x}}\right) \mathrm{dx}\)
4 \(\int_{-100}^{100} f(-\mathrm{x}) \mathrm{dx}\)
5 \(\int_{-100}^{100}[\boldsymbol{f}(\mathrm{x})+\boldsymbol{f}(-\mathrm{x})] \mathrm{dx}\)
Integral Calculus

86780 Given that \(\int_{0}^{\infty} \frac{\mathbf{x}^{2}}{\left(\mathbf{x}^{2}+\mathbf{a}^{2}\right)\left(\mathrm{x}^{2}+\mathbf{b}^{2}\right)\left(\mathrm{x}^{2}+\mathbf{c}^{2}\right)}\)
\(=\frac{\pi}{2(a+b)(b+c)(c+a)}, \text { then } \int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)} \text { is }\)

1 \(\frac{\pi}{60}\)
2 \(\frac{\pi}{20}\)
3 \(\frac{\pi}{40}\)
4 \(\frac{\pi}{80}\)
Integral Calculus

86781 \(\int_{1}^{\sqrt{3}} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}\) equals

1 \(\frac{\pi}{3}\)
2 \(\frac{2 \pi}{3}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{12}\)
Integral Calculus

86765 \(\int_{-100}^{100} f(x) d x\) is equal to

1 \(\int_{-100}^{100} f\left(\mathrm{x}^{2}\right) \mathrm{dx}\)
2 \(\int_{-100}^{100} f\left(-\mathrm{x}^{2}\right) \mathrm{dx}\)
3 \(\int_{-100}^{100} f\left(\frac{1}{\mathrm{x}}\right) \mathrm{dx}\)
4 \(\int_{-100}^{100} f(-\mathrm{x}) \mathrm{dx}\)
5 \(\int_{-100}^{100}[\boldsymbol{f}(\mathrm{x})+\boldsymbol{f}(-\mathrm{x})] \mathrm{dx}\)
Integral Calculus

86780 Given that \(\int_{0}^{\infty} \frac{\mathbf{x}^{2}}{\left(\mathbf{x}^{2}+\mathbf{a}^{2}\right)\left(\mathrm{x}^{2}+\mathbf{b}^{2}\right)\left(\mathrm{x}^{2}+\mathbf{c}^{2}\right)}\)
\(=\frac{\pi}{2(a+b)(b+c)(c+a)}, \text { then } \int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)} \text { is }\)

1 \(\frac{\pi}{60}\)
2 \(\frac{\pi}{20}\)
3 \(\frac{\pi}{40}\)
4 \(\frac{\pi}{80}\)
Integral Calculus

86781 \(\int_{1}^{\sqrt{3}} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}\) equals

1 \(\frac{\pi}{3}\)
2 \(\frac{2 \pi}{3}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{12}\)
Integral Calculus

86765 \(\int_{-100}^{100} f(x) d x\) is equal to

1 \(\int_{-100}^{100} f\left(\mathrm{x}^{2}\right) \mathrm{dx}\)
2 \(\int_{-100}^{100} f\left(-\mathrm{x}^{2}\right) \mathrm{dx}\)
3 \(\int_{-100}^{100} f\left(\frac{1}{\mathrm{x}}\right) \mathrm{dx}\)
4 \(\int_{-100}^{100} f(-\mathrm{x}) \mathrm{dx}\)
5 \(\int_{-100}^{100}[\boldsymbol{f}(\mathrm{x})+\boldsymbol{f}(-\mathrm{x})] \mathrm{dx}\)
Integral Calculus

86780 Given that \(\int_{0}^{\infty} \frac{\mathbf{x}^{2}}{\left(\mathbf{x}^{2}+\mathbf{a}^{2}\right)\left(\mathrm{x}^{2}+\mathbf{b}^{2}\right)\left(\mathrm{x}^{2}+\mathbf{c}^{2}\right)}\)
\(=\frac{\pi}{2(a+b)(b+c)(c+a)}, \text { then } \int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)} \text { is }\)

1 \(\frac{\pi}{60}\)
2 \(\frac{\pi}{20}\)
3 \(\frac{\pi}{40}\)
4 \(\frac{\pi}{80}\)
Integral Calculus

86781 \(\int_{1}^{\sqrt{3}} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}\) equals

1 \(\frac{\pi}{3}\)
2 \(\frac{2 \pi}{3}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{12}\)