Definite Integrals of Odd, Even and Periodic Function
Integral Calculus

86744 Let \([t]\) denote the greatest integer less than or equal to \(t\). Then, the value of the integral \(\int_{0}^{1}\left[-8 x^{2}+6 x-1\right] d x\) is equal to

1 -1
2 \(-\frac{5}{4}\)
3 \(\frac{\sqrt{17}-13}{8}\)
4 \(\frac{\sqrt{17}-16}{8}\)
Integral Calculus

86745 \(\int_{-1 / 2}^{1 / 2} \frac{d x}{\left(1-x^{2}\right)^{1 / 2}}\) is equal to

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 0
Integral Calculus

86746 The integral
\(\int_{-1 / 2}^{1 / 2}\left\{[x]+\log \left(\frac{1+x}{1-x}\right)\right\} d x=\text { ? Where [.] is the }\)
greatest integer function

1 \(-1 / 2\)
2 0
3 1
4 \(2 \log (1 / 2)\)
Integral Calculus

86747 If \(I_{n}=\int_{0}^{\pi / 4} \tan ^{n} \theta d \theta\), then \(I_{8}+I_{6}\) is equal to

1 \(1 / 4\)
2 \(1 / 5\)
3 \(1 / 6\)
4 \(1 / 7\)
Integral Calculus

86744 Let \([t]\) denote the greatest integer less than or equal to \(t\). Then, the value of the integral \(\int_{0}^{1}\left[-8 x^{2}+6 x-1\right] d x\) is equal to

1 -1
2 \(-\frac{5}{4}\)
3 \(\frac{\sqrt{17}-13}{8}\)
4 \(\frac{\sqrt{17}-16}{8}\)
Integral Calculus

86745 \(\int_{-1 / 2}^{1 / 2} \frac{d x}{\left(1-x^{2}\right)^{1 / 2}}\) is equal to

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 0
Integral Calculus

86746 The integral
\(\int_{-1 / 2}^{1 / 2}\left\{[x]+\log \left(\frac{1+x}{1-x}\right)\right\} d x=\text { ? Where [.] is the }\)
greatest integer function

1 \(-1 / 2\)
2 0
3 1
4 \(2 \log (1 / 2)\)
Integral Calculus

86747 If \(I_{n}=\int_{0}^{\pi / 4} \tan ^{n} \theta d \theta\), then \(I_{8}+I_{6}\) is equal to

1 \(1 / 4\)
2 \(1 / 5\)
3 \(1 / 6\)
4 \(1 / 7\)
Integral Calculus

86744 Let \([t]\) denote the greatest integer less than or equal to \(t\). Then, the value of the integral \(\int_{0}^{1}\left[-8 x^{2}+6 x-1\right] d x\) is equal to

1 -1
2 \(-\frac{5}{4}\)
3 \(\frac{\sqrt{17}-13}{8}\)
4 \(\frac{\sqrt{17}-16}{8}\)
Integral Calculus

86745 \(\int_{-1 / 2}^{1 / 2} \frac{d x}{\left(1-x^{2}\right)^{1 / 2}}\) is equal to

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 0
Integral Calculus

86746 The integral
\(\int_{-1 / 2}^{1 / 2}\left\{[x]+\log \left(\frac{1+x}{1-x}\right)\right\} d x=\text { ? Where [.] is the }\)
greatest integer function

1 \(-1 / 2\)
2 0
3 1
4 \(2 \log (1 / 2)\)
Integral Calculus

86747 If \(I_{n}=\int_{0}^{\pi / 4} \tan ^{n} \theta d \theta\), then \(I_{8}+I_{6}\) is equal to

1 \(1 / 4\)
2 \(1 / 5\)
3 \(1 / 6\)
4 \(1 / 7\)
Integral Calculus

86744 Let \([t]\) denote the greatest integer less than or equal to \(t\). Then, the value of the integral \(\int_{0}^{1}\left[-8 x^{2}+6 x-1\right] d x\) is equal to

1 -1
2 \(-\frac{5}{4}\)
3 \(\frac{\sqrt{17}-13}{8}\)
4 \(\frac{\sqrt{17}-16}{8}\)
Integral Calculus

86745 \(\int_{-1 / 2}^{1 / 2} \frac{d x}{\left(1-x^{2}\right)^{1 / 2}}\) is equal to

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 0
Integral Calculus

86746 The integral
\(\int_{-1 / 2}^{1 / 2}\left\{[x]+\log \left(\frac{1+x}{1-x}\right)\right\} d x=\text { ? Where [.] is the }\)
greatest integer function

1 \(-1 / 2\)
2 0
3 1
4 \(2 \log (1 / 2)\)
Integral Calculus

86747 If \(I_{n}=\int_{0}^{\pi / 4} \tan ^{n} \theta d \theta\), then \(I_{8}+I_{6}\) is equal to

1 \(1 / 4\)
2 \(1 / 5\)
3 \(1 / 6\)
4 \(1 / 7\)