86741 If the integral \(\int_{0}^{10} \frac{[\sin 2 \pi x]}{e^{x-[x]}} d x=\alpha e^{-1}+\beta e^{-\frac{1}{2}}+\gamma\) where \(\alpha, \beta, \gamma\) are integers and \([x]\) denotes the greatest integer less than or equal to \(x\), then the value of \(\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}\) is equal to
86741 If the integral \(\int_{0}^{10} \frac{[\sin 2 \pi x]}{e^{x-[x]}} d x=\alpha e^{-1}+\beta e^{-\frac{1}{2}}+\gamma\) where \(\alpha, \beta, \gamma\) are integers and \([x]\) denotes the greatest integer less than or equal to \(x\), then the value of \(\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}\) is equal to
86741 If the integral \(\int_{0}^{10} \frac{[\sin 2 \pi x]}{e^{x-[x]}} d x=\alpha e^{-1}+\beta e^{-\frac{1}{2}}+\gamma\) where \(\alpha, \beta, \gamma\) are integers and \([x]\) denotes the greatest integer less than or equal to \(x\), then the value of \(\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}\) is equal to
86741 If the integral \(\int_{0}^{10} \frac{[\sin 2 \pi x]}{e^{x-[x]}} d x=\alpha e^{-1}+\beta e^{-\frac{1}{2}}+\gamma\) where \(\alpha, \beta, \gamma\) are integers and \([x]\) denotes the greatest integer less than or equal to \(x\), then the value of \(\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}\) is equal to
86741 If the integral \(\int_{0}^{10} \frac{[\sin 2 \pi x]}{e^{x-[x]}} d x=\alpha e^{-1}+\beta e^{-\frac{1}{2}}+\gamma\) where \(\alpha, \beta, \gamma\) are integers and \([x]\) denotes the greatest integer less than or equal to \(x\), then the value of \(\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}\) is equal to