Definite Integrals of Odd, Even and Periodic Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86732 \(\int_{-3}^{3} \cot ^{-1} x d x=\)

1 \(3 \pi\)
2 \(6 \pi\)
3 0
4 3
Integral Calculus

86736 If \(f(x)\) defined \([-2,2]\) by \(f(x)=4 x^{2}-3 x+1\) and \(g(x)=\frac{f(-x)-f(x)}{x^{2}+3}\), then \(\int_{-2}^{2} g(x) d x\) is equal to

1 64
2 -48
3 0
4 24
Integral Calculus

86737 The value of \(\int_{-\pi / 2}^{\pi / 2} \frac{d x}{[x]+[\sin x]+4}\) where \([t]\) denotes the greatest integer less than or equal to \(t\), is

1 \(\frac{1}{12}(7 \pi-5)\)
2 \(\frac{1}{12}(7 \pi+5)\)
3 \(\frac{3}{10}(4 \pi-3)\)
4 \(\frac{3}{20}(4 \pi-3)\)
Integral Calculus

86738 If \(f(a+b+1-x)=f(x)\), for all \(x\), where \(a\) and \(b\) are fixed positive real numbers, then
\(\frac{1}{a+b} \int_{a}^{b} x(f(x)+f(x+1)) d x\) is equal to

1 \(\int_{a+1}^{b+1} f(x+1) d x\)
2 \(\int_{a+1}^{b+1} f(x) d x\)
3 \(\int_{a-1}^{b-1} f(x+1) d x\)
4 \(\int_{a-1}^{b-1} f(x) d x\)
Integral Calculus

86732 \(\int_{-3}^{3} \cot ^{-1} x d x=\)

1 \(3 \pi\)
2 \(6 \pi\)
3 0
4 3
Integral Calculus

86736 If \(f(x)\) defined \([-2,2]\) by \(f(x)=4 x^{2}-3 x+1\) and \(g(x)=\frac{f(-x)-f(x)}{x^{2}+3}\), then \(\int_{-2}^{2} g(x) d x\) is equal to

1 64
2 -48
3 0
4 24
Integral Calculus

86737 The value of \(\int_{-\pi / 2}^{\pi / 2} \frac{d x}{[x]+[\sin x]+4}\) where \([t]\) denotes the greatest integer less than or equal to \(t\), is

1 \(\frac{1}{12}(7 \pi-5)\)
2 \(\frac{1}{12}(7 \pi+5)\)
3 \(\frac{3}{10}(4 \pi-3)\)
4 \(\frac{3}{20}(4 \pi-3)\)
Integral Calculus

86738 If \(f(a+b+1-x)=f(x)\), for all \(x\), where \(a\) and \(b\) are fixed positive real numbers, then
\(\frac{1}{a+b} \int_{a}^{b} x(f(x)+f(x+1)) d x\) is equal to

1 \(\int_{a+1}^{b+1} f(x+1) d x\)
2 \(\int_{a+1}^{b+1} f(x) d x\)
3 \(\int_{a-1}^{b-1} f(x+1) d x\)
4 \(\int_{a-1}^{b-1} f(x) d x\)
Integral Calculus

86732 \(\int_{-3}^{3} \cot ^{-1} x d x=\)

1 \(3 \pi\)
2 \(6 \pi\)
3 0
4 3
Integral Calculus

86736 If \(f(x)\) defined \([-2,2]\) by \(f(x)=4 x^{2}-3 x+1\) and \(g(x)=\frac{f(-x)-f(x)}{x^{2}+3}\), then \(\int_{-2}^{2} g(x) d x\) is equal to

1 64
2 -48
3 0
4 24
Integral Calculus

86737 The value of \(\int_{-\pi / 2}^{\pi / 2} \frac{d x}{[x]+[\sin x]+4}\) where \([t]\) denotes the greatest integer less than or equal to \(t\), is

1 \(\frac{1}{12}(7 \pi-5)\)
2 \(\frac{1}{12}(7 \pi+5)\)
3 \(\frac{3}{10}(4 \pi-3)\)
4 \(\frac{3}{20}(4 \pi-3)\)
Integral Calculus

86738 If \(f(a+b+1-x)=f(x)\), for all \(x\), where \(a\) and \(b\) are fixed positive real numbers, then
\(\frac{1}{a+b} \int_{a}^{b} x(f(x)+f(x+1)) d x\) is equal to

1 \(\int_{a+1}^{b+1} f(x+1) d x\)
2 \(\int_{a+1}^{b+1} f(x) d x\)
3 \(\int_{a-1}^{b-1} f(x+1) d x\)
4 \(\int_{a-1}^{b-1} f(x) d x\)
Integral Calculus

86732 \(\int_{-3}^{3} \cot ^{-1} x d x=\)

1 \(3 \pi\)
2 \(6 \pi\)
3 0
4 3
Integral Calculus

86736 If \(f(x)\) defined \([-2,2]\) by \(f(x)=4 x^{2}-3 x+1\) and \(g(x)=\frac{f(-x)-f(x)}{x^{2}+3}\), then \(\int_{-2}^{2} g(x) d x\) is equal to

1 64
2 -48
3 0
4 24
Integral Calculus

86737 The value of \(\int_{-\pi / 2}^{\pi / 2} \frac{d x}{[x]+[\sin x]+4}\) where \([t]\) denotes the greatest integer less than or equal to \(t\), is

1 \(\frac{1}{12}(7 \pi-5)\)
2 \(\frac{1}{12}(7 \pi+5)\)
3 \(\frac{3}{10}(4 \pi-3)\)
4 \(\frac{3}{20}(4 \pi-3)\)
Integral Calculus

86738 If \(f(a+b+1-x)=f(x)\), for all \(x\), where \(a\) and \(b\) are fixed positive real numbers, then
\(\frac{1}{a+b} \int_{a}^{b} x(f(x)+f(x+1)) d x\) is equal to

1 \(\int_{a+1}^{b+1} f(x+1) d x\)
2 \(\int_{a+1}^{b+1} f(x) d x\)
3 \(\int_{a-1}^{b-1} f(x+1) d x\)
4 \(\int_{a-1}^{b-1} f(x) d x\)