Definite Integrals of Odd, Even and Periodic Function
Integral Calculus

86726 The value of the integral \(\int_{0}^{\pi / 2} \frac{1}{1+(\tan x)^{101}} d x\) is equal to

1 1
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{8}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86729 The value of the integral
\(\int_{-1}^{1}\left\{\frac{x^{2015}}{e^{|x|}\left(x^{2}+\cos x\right)}+\frac{1}{e^{|x|}}\right\} d x\) is equal to

1 0
2 \(1-\mathrm{e}^{-1}\)
3 \(2 \mathrm{e}^{-1}\)
4 \(2\left(1-\mathrm{e}^{-1}\right)\)
Integral Calculus

86730 The value of the integral
\(\int_{-1 / 2}^{1 / 2}\left\{\left(\frac{x+1}{x-1}\right)^{2}+\left(\frac{x-1}{x+1}\right)^{2}-2\right\}^{1 / 2} d x\) is equal to

1 \(\log _{\mathrm{e}}\left(\frac{4}{3}\right)\)
2 \(4 \log _{\mathrm{e}}(3 / 4)\)
3 \(4 \log _{\mathrm{e}}\left(\frac{4}{3}\right)\)
4 \(\log _{\mathrm{e}}(3 / 4)\)
Integral Calculus

86731 \(\int_{-\pi / 4}^{\pi / 4} \frac{d x}{1+\cos 2 x}\) is equal to

1 1
2 0
3 2
4 4
Integral Calculus

86726 The value of the integral \(\int_{0}^{\pi / 2} \frac{1}{1+(\tan x)^{101}} d x\) is equal to

1 1
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{8}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86729 The value of the integral
\(\int_{-1}^{1}\left\{\frac{x^{2015}}{e^{|x|}\left(x^{2}+\cos x\right)}+\frac{1}{e^{|x|}}\right\} d x\) is equal to

1 0
2 \(1-\mathrm{e}^{-1}\)
3 \(2 \mathrm{e}^{-1}\)
4 \(2\left(1-\mathrm{e}^{-1}\right)\)
Integral Calculus

86730 The value of the integral
\(\int_{-1 / 2}^{1 / 2}\left\{\left(\frac{x+1}{x-1}\right)^{2}+\left(\frac{x-1}{x+1}\right)^{2}-2\right\}^{1 / 2} d x\) is equal to

1 \(\log _{\mathrm{e}}\left(\frac{4}{3}\right)\)
2 \(4 \log _{\mathrm{e}}(3 / 4)\)
3 \(4 \log _{\mathrm{e}}\left(\frac{4}{3}\right)\)
4 \(\log _{\mathrm{e}}(3 / 4)\)
Integral Calculus

86731 \(\int_{-\pi / 4}^{\pi / 4} \frac{d x}{1+\cos 2 x}\) is equal to

1 1
2 0
3 2
4 4
Integral Calculus

86726 The value of the integral \(\int_{0}^{\pi / 2} \frac{1}{1+(\tan x)^{101}} d x\) is equal to

1 1
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{8}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86729 The value of the integral
\(\int_{-1}^{1}\left\{\frac{x^{2015}}{e^{|x|}\left(x^{2}+\cos x\right)}+\frac{1}{e^{|x|}}\right\} d x\) is equal to

1 0
2 \(1-\mathrm{e}^{-1}\)
3 \(2 \mathrm{e}^{-1}\)
4 \(2\left(1-\mathrm{e}^{-1}\right)\)
Integral Calculus

86730 The value of the integral
\(\int_{-1 / 2}^{1 / 2}\left\{\left(\frac{x+1}{x-1}\right)^{2}+\left(\frac{x-1}{x+1}\right)^{2}-2\right\}^{1 / 2} d x\) is equal to

1 \(\log _{\mathrm{e}}\left(\frac{4}{3}\right)\)
2 \(4 \log _{\mathrm{e}}(3 / 4)\)
3 \(4 \log _{\mathrm{e}}\left(\frac{4}{3}\right)\)
4 \(\log _{\mathrm{e}}(3 / 4)\)
Integral Calculus

86731 \(\int_{-\pi / 4}^{\pi / 4} \frac{d x}{1+\cos 2 x}\) is equal to

1 1
2 0
3 2
4 4
Integral Calculus

86726 The value of the integral \(\int_{0}^{\pi / 2} \frac{1}{1+(\tan x)^{101}} d x\) is equal to

1 1
2 \(\frac{\pi}{6}\)
3 \(\frac{\pi}{8}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86729 The value of the integral
\(\int_{-1}^{1}\left\{\frac{x^{2015}}{e^{|x|}\left(x^{2}+\cos x\right)}+\frac{1}{e^{|x|}}\right\} d x\) is equal to

1 0
2 \(1-\mathrm{e}^{-1}\)
3 \(2 \mathrm{e}^{-1}\)
4 \(2\left(1-\mathrm{e}^{-1}\right)\)
Integral Calculus

86730 The value of the integral
\(\int_{-1 / 2}^{1 / 2}\left\{\left(\frac{x+1}{x-1}\right)^{2}+\left(\frac{x-1}{x+1}\right)^{2}-2\right\}^{1 / 2} d x\) is equal to

1 \(\log _{\mathrm{e}}\left(\frac{4}{3}\right)\)
2 \(4 \log _{\mathrm{e}}(3 / 4)\)
3 \(4 \log _{\mathrm{e}}\left(\frac{4}{3}\right)\)
4 \(\log _{\mathrm{e}}(3 / 4)\)
Integral Calculus

86731 \(\int_{-\pi / 4}^{\pi / 4} \frac{d x}{1+\cos 2 x}\) is equal to

1 1
2 0
3 2
4 4