86724
For any real number \(x\), let \([x]\) denote the largest integer less than or equal to \(x\). Let \(f\) be a real valued function defined on the interval [\(10,10]\) by
\(f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even }\end{array}\right.\)
Then the value of \(\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x d x\) is
86724
For any real number \(x\), let \([x]\) denote the largest integer less than or equal to \(x\). Let \(f\) be a real valued function defined on the interval [\(10,10]\) by
\(f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even }\end{array}\right.\)
Then the value of \(\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x d x\) is
86724
For any real number \(x\), let \([x]\) denote the largest integer less than or equal to \(x\). Let \(f\) be a real valued function defined on the interval [\(10,10]\) by
\(f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even }\end{array}\right.\)
Then the value of \(\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x d x\) is
86724
For any real number \(x\), let \([x]\) denote the largest integer less than or equal to \(x\). Let \(f\) be a real valued function defined on the interval [\(10,10]\) by
\(f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even }\end{array}\right.\)
Then the value of \(\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x d x\) is
86724
For any real number \(x\), let \([x]\) denote the largest integer less than or equal to \(x\). Let \(f\) be a real valued function defined on the interval [\(10,10]\) by
\(f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even }\end{array}\right.\)
Then the value of \(\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x d x\) is