Definite Integrals of Odd, Even and Periodic Function
Integral Calculus

86720 \(\int_{0}^{100} e^{x-[x]} d x\) is equal to

1 \(50(\mathrm{e}-1)\)
2 \(75(\mathrm{e}-1)\)
3 \(90(\mathrm{e}-1)\)
4 \(100(\mathrm{e}-1)\)
Integral Calculus

86721 \(\int_{-\pi / 4}^{\pi / 4} x \tan \left(1+x^{2}\right) d x=\)

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{-\pi}{4}\)
4 1
Integral Calculus

86723 What is \(\int_{-1}^{1} \frac{x d x}{x^{4}+x^{2}+1}\) equal to?

1 0
2 1
3 2
4 None of the above
Integral Calculus

86724 For any real number \(x\), let \([x]\) denote the largest integer less than or equal to \(x\). Let \(f\) be a real valued function defined on the interval [\(10,10]\) by
\(f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even }\end{array}\right.\)
Then the value of \(\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x d x\) is

1 2
2 4
3 0
4 none of these
Integral Calculus

86725 The value of the integral
\(\int_{\pi / 6}^{\pi / 2}\left(\frac{1+\sin 2 x+\cos 2 x}{\sin x+\cos x}\right) d x\) is equal to

1 16
2 8
3 4
4 1
Integral Calculus

86720 \(\int_{0}^{100} e^{x-[x]} d x\) is equal to

1 \(50(\mathrm{e}-1)\)
2 \(75(\mathrm{e}-1)\)
3 \(90(\mathrm{e}-1)\)
4 \(100(\mathrm{e}-1)\)
Integral Calculus

86721 \(\int_{-\pi / 4}^{\pi / 4} x \tan \left(1+x^{2}\right) d x=\)

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{-\pi}{4}\)
4 1
Integral Calculus

86723 What is \(\int_{-1}^{1} \frac{x d x}{x^{4}+x^{2}+1}\) equal to?

1 0
2 1
3 2
4 None of the above
Integral Calculus

86724 For any real number \(x\), let \([x]\) denote the largest integer less than or equal to \(x\). Let \(f\) be a real valued function defined on the interval [\(10,10]\) by
\(f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even }\end{array}\right.\)
Then the value of \(\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x d x\) is

1 2
2 4
3 0
4 none of these
Integral Calculus

86725 The value of the integral
\(\int_{\pi / 6}^{\pi / 2}\left(\frac{1+\sin 2 x+\cos 2 x}{\sin x+\cos x}\right) d x\) is equal to

1 16
2 8
3 4
4 1
Integral Calculus

86720 \(\int_{0}^{100} e^{x-[x]} d x\) is equal to

1 \(50(\mathrm{e}-1)\)
2 \(75(\mathrm{e}-1)\)
3 \(90(\mathrm{e}-1)\)
4 \(100(\mathrm{e}-1)\)
Integral Calculus

86721 \(\int_{-\pi / 4}^{\pi / 4} x \tan \left(1+x^{2}\right) d x=\)

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{-\pi}{4}\)
4 1
Integral Calculus

86723 What is \(\int_{-1}^{1} \frac{x d x}{x^{4}+x^{2}+1}\) equal to?

1 0
2 1
3 2
4 None of the above
Integral Calculus

86724 For any real number \(x\), let \([x]\) denote the largest integer less than or equal to \(x\). Let \(f\) be a real valued function defined on the interval [\(10,10]\) by
\(f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even }\end{array}\right.\)
Then the value of \(\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x d x\) is

1 2
2 4
3 0
4 none of these
Integral Calculus

86725 The value of the integral
\(\int_{\pi / 6}^{\pi / 2}\left(\frac{1+\sin 2 x+\cos 2 x}{\sin x+\cos x}\right) d x\) is equal to

1 16
2 8
3 4
4 1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86720 \(\int_{0}^{100} e^{x-[x]} d x\) is equal to

1 \(50(\mathrm{e}-1)\)
2 \(75(\mathrm{e}-1)\)
3 \(90(\mathrm{e}-1)\)
4 \(100(\mathrm{e}-1)\)
Integral Calculus

86721 \(\int_{-\pi / 4}^{\pi / 4} x \tan \left(1+x^{2}\right) d x=\)

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{-\pi}{4}\)
4 1
Integral Calculus

86723 What is \(\int_{-1}^{1} \frac{x d x}{x^{4}+x^{2}+1}\) equal to?

1 0
2 1
3 2
4 None of the above
Integral Calculus

86724 For any real number \(x\), let \([x]\) denote the largest integer less than or equal to \(x\). Let \(f\) be a real valued function defined on the interval [\(10,10]\) by
\(f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even }\end{array}\right.\)
Then the value of \(\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x d x\) is

1 2
2 4
3 0
4 none of these
Integral Calculus

86725 The value of the integral
\(\int_{\pi / 6}^{\pi / 2}\left(\frac{1+\sin 2 x+\cos 2 x}{\sin x+\cos x}\right) d x\) is equal to

1 16
2 8
3 4
4 1
Integral Calculus

86720 \(\int_{0}^{100} e^{x-[x]} d x\) is equal to

1 \(50(\mathrm{e}-1)\)
2 \(75(\mathrm{e}-1)\)
3 \(90(\mathrm{e}-1)\)
4 \(100(\mathrm{e}-1)\)
Integral Calculus

86721 \(\int_{-\pi / 4}^{\pi / 4} x \tan \left(1+x^{2}\right) d x=\)

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{-\pi}{4}\)
4 1
Integral Calculus

86723 What is \(\int_{-1}^{1} \frac{x d x}{x^{4}+x^{2}+1}\) equal to?

1 0
2 1
3 2
4 None of the above
Integral Calculus

86724 For any real number \(x\), let \([x]\) denote the largest integer less than or equal to \(x\). Let \(f\) be a real valued function defined on the interval [\(10,10]\) by
\(f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even }\end{array}\right.\)
Then the value of \(\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x d x\) is

1 2
2 4
3 0
4 none of these
Integral Calculus

86725 The value of the integral
\(\int_{\pi / 6}^{\pi / 2}\left(\frac{1+\sin 2 x+\cos 2 x}{\sin x+\cos x}\right) d x\) is equal to

1 16
2 8
3 4
4 1