Definite Integrals of Odd, Even and Periodic Function
Integral Calculus

86716 \(\int\left(\frac{2018 \mathrm{x}^{2017}+2018^{\mathrm{x}} \log _{\mathrm{e}} 2018}{\mathrm{x}^{2018}+2018^{\mathrm{x}}}\right) \mathrm{dx}=\)

1 \(\log \left|2018^{\mathrm{x}}+\mathrm{x}^{2018}\right|+\mathrm{c}\)
2 \(\left(2018^{\mathrm{x}}-\mathrm{x}^{2018}\right)^{-1}+\mathrm{c}\)
3 \(\left|2018^{\mathrm{x}}+\mathrm{x}^{2018}\right|+\mathrm{c}\)
4 \(2018^{\mathrm{x}}+\mathrm{x}^{2018}+\mathrm{c}\)
Integral Calculus

86717 \(\int_{0}^{5} \cos \left(\pi\left(x-\left[\frac{x}{2}\right]\right)\right) d x, \quad\) where \([t] \quad\) denotes greatest integer less than or equal to \(t\), is equal to :

1 -3
2 -2
3 2
4 0
Integral Calculus

86718 If \(I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x\). Then

1 \(\frac{\pi}{2}\lt \) I \(\lt \frac{3 \pi}{4}\)
2 \(\frac{\pi}{5}\lt \) I \(\lt \frac{5 \pi}{12}\)
3 \(\frac{5 \pi}{12}\lt \mathrm{I}\lt \frac{\sqrt{2}}{3} \pi\)
4 \(\frac{3 \pi}{4}\lt \) I \(\lt \pi\)
Integral Calculus

86719 What is \(\int_{-1}^{1} \frac{|x|}{x} d x\) equal to?

1 2
2 0
3 1
4 \(1 / 2\)
Integral Calculus

86716 \(\int\left(\frac{2018 \mathrm{x}^{2017}+2018^{\mathrm{x}} \log _{\mathrm{e}} 2018}{\mathrm{x}^{2018}+2018^{\mathrm{x}}}\right) \mathrm{dx}=\)

1 \(\log \left|2018^{\mathrm{x}}+\mathrm{x}^{2018}\right|+\mathrm{c}\)
2 \(\left(2018^{\mathrm{x}}-\mathrm{x}^{2018}\right)^{-1}+\mathrm{c}\)
3 \(\left|2018^{\mathrm{x}}+\mathrm{x}^{2018}\right|+\mathrm{c}\)
4 \(2018^{\mathrm{x}}+\mathrm{x}^{2018}+\mathrm{c}\)
Integral Calculus

86717 \(\int_{0}^{5} \cos \left(\pi\left(x-\left[\frac{x}{2}\right]\right)\right) d x, \quad\) where \([t] \quad\) denotes greatest integer less than or equal to \(t\), is equal to :

1 -3
2 -2
3 2
4 0
Integral Calculus

86718 If \(I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x\). Then

1 \(\frac{\pi}{2}\lt \) I \(\lt \frac{3 \pi}{4}\)
2 \(\frac{\pi}{5}\lt \) I \(\lt \frac{5 \pi}{12}\)
3 \(\frac{5 \pi}{12}\lt \mathrm{I}\lt \frac{\sqrt{2}}{3} \pi\)
4 \(\frac{3 \pi}{4}\lt \) I \(\lt \pi\)
Integral Calculus

86719 What is \(\int_{-1}^{1} \frac{|x|}{x} d x\) equal to?

1 2
2 0
3 1
4 \(1 / 2\)
Integral Calculus

86716 \(\int\left(\frac{2018 \mathrm{x}^{2017}+2018^{\mathrm{x}} \log _{\mathrm{e}} 2018}{\mathrm{x}^{2018}+2018^{\mathrm{x}}}\right) \mathrm{dx}=\)

1 \(\log \left|2018^{\mathrm{x}}+\mathrm{x}^{2018}\right|+\mathrm{c}\)
2 \(\left(2018^{\mathrm{x}}-\mathrm{x}^{2018}\right)^{-1}+\mathrm{c}\)
3 \(\left|2018^{\mathrm{x}}+\mathrm{x}^{2018}\right|+\mathrm{c}\)
4 \(2018^{\mathrm{x}}+\mathrm{x}^{2018}+\mathrm{c}\)
Integral Calculus

86717 \(\int_{0}^{5} \cos \left(\pi\left(x-\left[\frac{x}{2}\right]\right)\right) d x, \quad\) where \([t] \quad\) denotes greatest integer less than or equal to \(t\), is equal to :

1 -3
2 -2
3 2
4 0
Integral Calculus

86718 If \(I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x\). Then

1 \(\frac{\pi}{2}\lt \) I \(\lt \frac{3 \pi}{4}\)
2 \(\frac{\pi}{5}\lt \) I \(\lt \frac{5 \pi}{12}\)
3 \(\frac{5 \pi}{12}\lt \mathrm{I}\lt \frac{\sqrt{2}}{3} \pi\)
4 \(\frac{3 \pi}{4}\lt \) I \(\lt \pi\)
Integral Calculus

86719 What is \(\int_{-1}^{1} \frac{|x|}{x} d x\) equal to?

1 2
2 0
3 1
4 \(1 / 2\)
Integral Calculus

86716 \(\int\left(\frac{2018 \mathrm{x}^{2017}+2018^{\mathrm{x}} \log _{\mathrm{e}} 2018}{\mathrm{x}^{2018}+2018^{\mathrm{x}}}\right) \mathrm{dx}=\)

1 \(\log \left|2018^{\mathrm{x}}+\mathrm{x}^{2018}\right|+\mathrm{c}\)
2 \(\left(2018^{\mathrm{x}}-\mathrm{x}^{2018}\right)^{-1}+\mathrm{c}\)
3 \(\left|2018^{\mathrm{x}}+\mathrm{x}^{2018}\right|+\mathrm{c}\)
4 \(2018^{\mathrm{x}}+\mathrm{x}^{2018}+\mathrm{c}\)
Integral Calculus

86717 \(\int_{0}^{5} \cos \left(\pi\left(x-\left[\frac{x}{2}\right]\right)\right) d x, \quad\) where \([t] \quad\) denotes greatest integer less than or equal to \(t\), is equal to :

1 -3
2 -2
3 2
4 0
Integral Calculus

86718 If \(I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x\). Then

1 \(\frac{\pi}{2}\lt \) I \(\lt \frac{3 \pi}{4}\)
2 \(\frac{\pi}{5}\lt \) I \(\lt \frac{5 \pi}{12}\)
3 \(\frac{5 \pi}{12}\lt \mathrm{I}\lt \frac{\sqrt{2}}{3} \pi\)
4 \(\frac{3 \pi}{4}\lt \) I \(\lt \pi\)
Integral Calculus

86719 What is \(\int_{-1}^{1} \frac{|x|}{x} d x\) equal to?

1 2
2 0
3 1
4 \(1 / 2\)