Theorem of Definite Integrals and its Properties
Integral Calculus

86617 The integral
\(\int_{2}^{4} \frac{\log x^{2}}{\log x^{2}+\log \left(36-12 x+x^{2}\right)} d x\) is equal to

1 2
2 4
3 1
4 6
Integral Calculus

86625 Let \(I=\int_{a}^{b}\left(x^{4}-2 x^{2}\right) d x\). If \(l\) is minimum, then the ordered pair \((a, b)\) is

1 \((-\sqrt{2}, 0)\)
2 \((0, \sqrt{2})\)
3 \((\sqrt{2},-\sqrt{2})\)
4 \((-\sqrt{2}, \sqrt{2})\)
Integral Calculus

86655 If \(f(x)=\sin ^{6} x+\cos ^{6} x+2 \sin ^{3} x \cos ^{3} x\), then \(\int_{0}^{\pi / 4} \frac{\sin ^{2} 2 x}{f(x)} d x=\)

1 2
2 \(\frac{2}{3}\)
3 \(\frac{-2}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86663 Let \(\frac{d}{d x} F(x)=\left(\frac{e^{\sin x}}{x}\right), x>0\) if
\(\int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} d x=f(k)-f(1)\), then one of the possible value of \(k\), is

1 15
2 16
3 63
4 64
Integral Calculus

86617 The integral
\(\int_{2}^{4} \frac{\log x^{2}}{\log x^{2}+\log \left(36-12 x+x^{2}\right)} d x\) is equal to

1 2
2 4
3 1
4 6
Integral Calculus

86625 Let \(I=\int_{a}^{b}\left(x^{4}-2 x^{2}\right) d x\). If \(l\) is minimum, then the ordered pair \((a, b)\) is

1 \((-\sqrt{2}, 0)\)
2 \((0, \sqrt{2})\)
3 \((\sqrt{2},-\sqrt{2})\)
4 \((-\sqrt{2}, \sqrt{2})\)
Integral Calculus

86655 If \(f(x)=\sin ^{6} x+\cos ^{6} x+2 \sin ^{3} x \cos ^{3} x\), then \(\int_{0}^{\pi / 4} \frac{\sin ^{2} 2 x}{f(x)} d x=\)

1 2
2 \(\frac{2}{3}\)
3 \(\frac{-2}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86663 Let \(\frac{d}{d x} F(x)=\left(\frac{e^{\sin x}}{x}\right), x>0\) if
\(\int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} d x=f(k)-f(1)\), then one of the possible value of \(k\), is

1 15
2 16
3 63
4 64
Integral Calculus

86617 The integral
\(\int_{2}^{4} \frac{\log x^{2}}{\log x^{2}+\log \left(36-12 x+x^{2}\right)} d x\) is equal to

1 2
2 4
3 1
4 6
Integral Calculus

86625 Let \(I=\int_{a}^{b}\left(x^{4}-2 x^{2}\right) d x\). If \(l\) is minimum, then the ordered pair \((a, b)\) is

1 \((-\sqrt{2}, 0)\)
2 \((0, \sqrt{2})\)
3 \((\sqrt{2},-\sqrt{2})\)
4 \((-\sqrt{2}, \sqrt{2})\)
Integral Calculus

86655 If \(f(x)=\sin ^{6} x+\cos ^{6} x+2 \sin ^{3} x \cos ^{3} x\), then \(\int_{0}^{\pi / 4} \frac{\sin ^{2} 2 x}{f(x)} d x=\)

1 2
2 \(\frac{2}{3}\)
3 \(\frac{-2}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86663 Let \(\frac{d}{d x} F(x)=\left(\frac{e^{\sin x}}{x}\right), x>0\) if
\(\int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} d x=f(k)-f(1)\), then one of the possible value of \(k\), is

1 15
2 16
3 63
4 64
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86617 The integral
\(\int_{2}^{4} \frac{\log x^{2}}{\log x^{2}+\log \left(36-12 x+x^{2}\right)} d x\) is equal to

1 2
2 4
3 1
4 6
Integral Calculus

86625 Let \(I=\int_{a}^{b}\left(x^{4}-2 x^{2}\right) d x\). If \(l\) is minimum, then the ordered pair \((a, b)\) is

1 \((-\sqrt{2}, 0)\)
2 \((0, \sqrt{2})\)
3 \((\sqrt{2},-\sqrt{2})\)
4 \((-\sqrt{2}, \sqrt{2})\)
Integral Calculus

86655 If \(f(x)=\sin ^{6} x+\cos ^{6} x+2 \sin ^{3} x \cos ^{3} x\), then \(\int_{0}^{\pi / 4} \frac{\sin ^{2} 2 x}{f(x)} d x=\)

1 2
2 \(\frac{2}{3}\)
3 \(\frac{-2}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86663 Let \(\frac{d}{d x} F(x)=\left(\frac{e^{\sin x}}{x}\right), x>0\) if
\(\int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} d x=f(k)-f(1)\), then one of the possible value of \(k\), is

1 15
2 16
3 63
4 64