Theorem of Definite Integrals and its Properties
Integral Calculus

86597 Integrating factor of the equation
\(\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=x^{2}-1 \text { is }\)

1 \(\frac{2 x}{x^{2}+1}\)
2 \(\frac{x^{2}-1}{x^{2}+1}\)
3 \(x^{2}+1\)
4 None of these
Integral Calculus

86598 \(\int_{-a}^{a} f(x) d x-\int_{0}^{a} f(-x) d x=\)

1 \(\int_{-a}^{a} f(a-x) d x\)
2 \(\int_{-a}^{a} f(x)+f(a-x) d x\)
3 \(\int_{0}^{a} f(x)+f(a-x) d x\)
4 \(\int_{0}^{a} f(a-x) d x\)
Integral Calculus

86599 If \(\int_{0}^{1} f(x) d x=1, \int_{0}^{1} x f(x) d x=a, \int_{0}^{1} x^{2} f(x) d x=a^{2}\)
then \(\int_{0}^{1}(x-a)^{2} f(x) d x=\)

1 \(a^{2}\)
2 \(\mathrm{a}^{2}+1\)
3 \(a^{2}-1\)
4 0
Integral Calculus

86609 If \(I=\int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x\) and \(J=\int_{0}^{1} \frac{\cos x}{\sqrt{x}} d x\). Then , which one of the following is true?

1 I \(>\frac{2}{3}\) and \(\mathrm{J}\lt 2\)
2 I \(>\frac{2}{3}\) and \(\mathrm{J}>2\)
3 I \(\lt \frac{2}{3}\) and \(\mathrm{J}\lt 2\)
4 I \(\lt \frac{2}{3}\) and \(\mathrm{J}>2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86597 Integrating factor of the equation
\(\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=x^{2}-1 \text { is }\)

1 \(\frac{2 x}{x^{2}+1}\)
2 \(\frac{x^{2}-1}{x^{2}+1}\)
3 \(x^{2}+1\)
4 None of these
Integral Calculus

86598 \(\int_{-a}^{a} f(x) d x-\int_{0}^{a} f(-x) d x=\)

1 \(\int_{-a}^{a} f(a-x) d x\)
2 \(\int_{-a}^{a} f(x)+f(a-x) d x\)
3 \(\int_{0}^{a} f(x)+f(a-x) d x\)
4 \(\int_{0}^{a} f(a-x) d x\)
Integral Calculus

86599 If \(\int_{0}^{1} f(x) d x=1, \int_{0}^{1} x f(x) d x=a, \int_{0}^{1} x^{2} f(x) d x=a^{2}\)
then \(\int_{0}^{1}(x-a)^{2} f(x) d x=\)

1 \(a^{2}\)
2 \(\mathrm{a}^{2}+1\)
3 \(a^{2}-1\)
4 0
Integral Calculus

86609 If \(I=\int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x\) and \(J=\int_{0}^{1} \frac{\cos x}{\sqrt{x}} d x\). Then , which one of the following is true?

1 I \(>\frac{2}{3}\) and \(\mathrm{J}\lt 2\)
2 I \(>\frac{2}{3}\) and \(\mathrm{J}>2\)
3 I \(\lt \frac{2}{3}\) and \(\mathrm{J}\lt 2\)
4 I \(\lt \frac{2}{3}\) and \(\mathrm{J}>2\)
Integral Calculus

86597 Integrating factor of the equation
\(\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=x^{2}-1 \text { is }\)

1 \(\frac{2 x}{x^{2}+1}\)
2 \(\frac{x^{2}-1}{x^{2}+1}\)
3 \(x^{2}+1\)
4 None of these
Integral Calculus

86598 \(\int_{-a}^{a} f(x) d x-\int_{0}^{a} f(-x) d x=\)

1 \(\int_{-a}^{a} f(a-x) d x\)
2 \(\int_{-a}^{a} f(x)+f(a-x) d x\)
3 \(\int_{0}^{a} f(x)+f(a-x) d x\)
4 \(\int_{0}^{a} f(a-x) d x\)
Integral Calculus

86599 If \(\int_{0}^{1} f(x) d x=1, \int_{0}^{1} x f(x) d x=a, \int_{0}^{1} x^{2} f(x) d x=a^{2}\)
then \(\int_{0}^{1}(x-a)^{2} f(x) d x=\)

1 \(a^{2}\)
2 \(\mathrm{a}^{2}+1\)
3 \(a^{2}-1\)
4 0
Integral Calculus

86609 If \(I=\int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x\) and \(J=\int_{0}^{1} \frac{\cos x}{\sqrt{x}} d x\). Then , which one of the following is true?

1 I \(>\frac{2}{3}\) and \(\mathrm{J}\lt 2\)
2 I \(>\frac{2}{3}\) and \(\mathrm{J}>2\)
3 I \(\lt \frac{2}{3}\) and \(\mathrm{J}\lt 2\)
4 I \(\lt \frac{2}{3}\) and \(\mathrm{J}>2\)
Integral Calculus

86597 Integrating factor of the equation
\(\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=x^{2}-1 \text { is }\)

1 \(\frac{2 x}{x^{2}+1}\)
2 \(\frac{x^{2}-1}{x^{2}+1}\)
3 \(x^{2}+1\)
4 None of these
Integral Calculus

86598 \(\int_{-a}^{a} f(x) d x-\int_{0}^{a} f(-x) d x=\)

1 \(\int_{-a}^{a} f(a-x) d x\)
2 \(\int_{-a}^{a} f(x)+f(a-x) d x\)
3 \(\int_{0}^{a} f(x)+f(a-x) d x\)
4 \(\int_{0}^{a} f(a-x) d x\)
Integral Calculus

86599 If \(\int_{0}^{1} f(x) d x=1, \int_{0}^{1} x f(x) d x=a, \int_{0}^{1} x^{2} f(x) d x=a^{2}\)
then \(\int_{0}^{1}(x-a)^{2} f(x) d x=\)

1 \(a^{2}\)
2 \(\mathrm{a}^{2}+1\)
3 \(a^{2}-1\)
4 0
Integral Calculus

86609 If \(I=\int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x\) and \(J=\int_{0}^{1} \frac{\cos x}{\sqrt{x}} d x\). Then , which one of the following is true?

1 I \(>\frac{2}{3}\) and \(\mathrm{J}\lt 2\)
2 I \(>\frac{2}{3}\) and \(\mathrm{J}>2\)
3 I \(\lt \frac{2}{3}\) and \(\mathrm{J}\lt 2\)
4 I \(\lt \frac{2}{3}\) and \(\mathrm{J}>2\)