Theorem of Definite Integrals and its Properties
Integral Calculus

86583 \(\int_{0}^{\alpha / 3} \frac{f(x)}{f(x)+f\left(\frac{\alpha-3 x}{3}\right)} d x=\)

1 \(\frac{2 \alpha}{3}\)
2 \(\frac{\alpha}{2}\)
3 \(\frac{\alpha}{3}\)
4 \(\frac{\alpha}{6}\)
Integral Calculus

86584 \(\int_{0}^{\pi / 2}|\sin \mathrm{t}-\cos \mathrm{t}| \mathrm{dt}=\)

1 \(2(\sqrt{2}+1)\)
2 \(2(\sqrt{2}-1)\)
3 \(\sqrt{2}+1\)
4 \(\sqrt{2}-1\)
Integral Calculus

86594 The value of \(\int_{0}^{2 \pi} \frac{d x}{e^{\sin x}+1}\) is

1 \(\pi\)
2 0
3 \(3 \pi\)
4 \(\frac{\pi}{2}\)
Integral Calculus

86595 If \(I_{1}=\int_{0}^{\pi / 2} x \sin x d x\) and \(I_{2}=\int_{0}^{\pi / 2} x \cos x d x\), then which one of the following is true?

1 \(\mathrm{I}_{1}+\mathrm{I}_{2}=\frac{\pi}{2}\)
2 \(\mathrm{I}_{2}-\mathrm{I}_{1}=\frac{\pi}{2}\)
3 \(\mathrm{I}_{1}+\mathrm{I}_{2}=0\)
4 \(I_{1}=I_{2}\)
Integral Calculus

86596 Let \(f(x)\) be a positive function. Let
\(I_{1}=\int_{1-k}^{k} x f\{x(1-x)\} d x\),
\(I_{2}=\int_{1-k}^{k} f\{x(1-x)\} d x\),
Where \(2 k-1>0\), then \(\frac{I_{1}}{I_{2}}\) is

1 2
2 \(\mathrm{k}\)
3 \(\frac{1}{2}\)
4 \(1\)
Integral Calculus

86583 \(\int_{0}^{\alpha / 3} \frac{f(x)}{f(x)+f\left(\frac{\alpha-3 x}{3}\right)} d x=\)

1 \(\frac{2 \alpha}{3}\)
2 \(\frac{\alpha}{2}\)
3 \(\frac{\alpha}{3}\)
4 \(\frac{\alpha}{6}\)
Integral Calculus

86584 \(\int_{0}^{\pi / 2}|\sin \mathrm{t}-\cos \mathrm{t}| \mathrm{dt}=\)

1 \(2(\sqrt{2}+1)\)
2 \(2(\sqrt{2}-1)\)
3 \(\sqrt{2}+1\)
4 \(\sqrt{2}-1\)
Integral Calculus

86594 The value of \(\int_{0}^{2 \pi} \frac{d x}{e^{\sin x}+1}\) is

1 \(\pi\)
2 0
3 \(3 \pi\)
4 \(\frac{\pi}{2}\)
Integral Calculus

86595 If \(I_{1}=\int_{0}^{\pi / 2} x \sin x d x\) and \(I_{2}=\int_{0}^{\pi / 2} x \cos x d x\), then which one of the following is true?

1 \(\mathrm{I}_{1}+\mathrm{I}_{2}=\frac{\pi}{2}\)
2 \(\mathrm{I}_{2}-\mathrm{I}_{1}=\frac{\pi}{2}\)
3 \(\mathrm{I}_{1}+\mathrm{I}_{2}=0\)
4 \(I_{1}=I_{2}\)
Integral Calculus

86596 Let \(f(x)\) be a positive function. Let
\(I_{1}=\int_{1-k}^{k} x f\{x(1-x)\} d x\),
\(I_{2}=\int_{1-k}^{k} f\{x(1-x)\} d x\),
Where \(2 k-1>0\), then \(\frac{I_{1}}{I_{2}}\) is

1 2
2 \(\mathrm{k}\)
3 \(\frac{1}{2}\)
4 \(1\)
Integral Calculus

86583 \(\int_{0}^{\alpha / 3} \frac{f(x)}{f(x)+f\left(\frac{\alpha-3 x}{3}\right)} d x=\)

1 \(\frac{2 \alpha}{3}\)
2 \(\frac{\alpha}{2}\)
3 \(\frac{\alpha}{3}\)
4 \(\frac{\alpha}{6}\)
Integral Calculus

86584 \(\int_{0}^{\pi / 2}|\sin \mathrm{t}-\cos \mathrm{t}| \mathrm{dt}=\)

1 \(2(\sqrt{2}+1)\)
2 \(2(\sqrt{2}-1)\)
3 \(\sqrt{2}+1\)
4 \(\sqrt{2}-1\)
Integral Calculus

86594 The value of \(\int_{0}^{2 \pi} \frac{d x}{e^{\sin x}+1}\) is

1 \(\pi\)
2 0
3 \(3 \pi\)
4 \(\frac{\pi}{2}\)
Integral Calculus

86595 If \(I_{1}=\int_{0}^{\pi / 2} x \sin x d x\) and \(I_{2}=\int_{0}^{\pi / 2} x \cos x d x\), then which one of the following is true?

1 \(\mathrm{I}_{1}+\mathrm{I}_{2}=\frac{\pi}{2}\)
2 \(\mathrm{I}_{2}-\mathrm{I}_{1}=\frac{\pi}{2}\)
3 \(\mathrm{I}_{1}+\mathrm{I}_{2}=0\)
4 \(I_{1}=I_{2}\)
Integral Calculus

86596 Let \(f(x)\) be a positive function. Let
\(I_{1}=\int_{1-k}^{k} x f\{x(1-x)\} d x\),
\(I_{2}=\int_{1-k}^{k} f\{x(1-x)\} d x\),
Where \(2 k-1>0\), then \(\frac{I_{1}}{I_{2}}\) is

1 2
2 \(\mathrm{k}\)
3 \(\frac{1}{2}\)
4 \(1\)
Integral Calculus

86583 \(\int_{0}^{\alpha / 3} \frac{f(x)}{f(x)+f\left(\frac{\alpha-3 x}{3}\right)} d x=\)

1 \(\frac{2 \alpha}{3}\)
2 \(\frac{\alpha}{2}\)
3 \(\frac{\alpha}{3}\)
4 \(\frac{\alpha}{6}\)
Integral Calculus

86584 \(\int_{0}^{\pi / 2}|\sin \mathrm{t}-\cos \mathrm{t}| \mathrm{dt}=\)

1 \(2(\sqrt{2}+1)\)
2 \(2(\sqrt{2}-1)\)
3 \(\sqrt{2}+1\)
4 \(\sqrt{2}-1\)
Integral Calculus

86594 The value of \(\int_{0}^{2 \pi} \frac{d x}{e^{\sin x}+1}\) is

1 \(\pi\)
2 0
3 \(3 \pi\)
4 \(\frac{\pi}{2}\)
Integral Calculus

86595 If \(I_{1}=\int_{0}^{\pi / 2} x \sin x d x\) and \(I_{2}=\int_{0}^{\pi / 2} x \cos x d x\), then which one of the following is true?

1 \(\mathrm{I}_{1}+\mathrm{I}_{2}=\frac{\pi}{2}\)
2 \(\mathrm{I}_{2}-\mathrm{I}_{1}=\frac{\pi}{2}\)
3 \(\mathrm{I}_{1}+\mathrm{I}_{2}=0\)
4 \(I_{1}=I_{2}\)
Integral Calculus

86596 Let \(f(x)\) be a positive function. Let
\(I_{1}=\int_{1-k}^{k} x f\{x(1-x)\} d x\),
\(I_{2}=\int_{1-k}^{k} f\{x(1-x)\} d x\),
Where \(2 k-1>0\), then \(\frac{I_{1}}{I_{2}}\) is

1 2
2 \(\mathrm{k}\)
3 \(\frac{1}{2}\)
4 \(1\)
Integral Calculus

86583 \(\int_{0}^{\alpha / 3} \frac{f(x)}{f(x)+f\left(\frac{\alpha-3 x}{3}\right)} d x=\)

1 \(\frac{2 \alpha}{3}\)
2 \(\frac{\alpha}{2}\)
3 \(\frac{\alpha}{3}\)
4 \(\frac{\alpha}{6}\)
Integral Calculus

86584 \(\int_{0}^{\pi / 2}|\sin \mathrm{t}-\cos \mathrm{t}| \mathrm{dt}=\)

1 \(2(\sqrt{2}+1)\)
2 \(2(\sqrt{2}-1)\)
3 \(\sqrt{2}+1\)
4 \(\sqrt{2}-1\)
Integral Calculus

86594 The value of \(\int_{0}^{2 \pi} \frac{d x}{e^{\sin x}+1}\) is

1 \(\pi\)
2 0
3 \(3 \pi\)
4 \(\frac{\pi}{2}\)
Integral Calculus

86595 If \(I_{1}=\int_{0}^{\pi / 2} x \sin x d x\) and \(I_{2}=\int_{0}^{\pi / 2} x \cos x d x\), then which one of the following is true?

1 \(\mathrm{I}_{1}+\mathrm{I}_{2}=\frac{\pi}{2}\)
2 \(\mathrm{I}_{2}-\mathrm{I}_{1}=\frac{\pi}{2}\)
3 \(\mathrm{I}_{1}+\mathrm{I}_{2}=0\)
4 \(I_{1}=I_{2}\)
Integral Calculus

86596 Let \(f(x)\) be a positive function. Let
\(I_{1}=\int_{1-k}^{k} x f\{x(1-x)\} d x\),
\(I_{2}=\int_{1-k}^{k} f\{x(1-x)\} d x\),
Where \(2 k-1>0\), then \(\frac{I_{1}}{I_{2}}\) is

1 2
2 \(\mathrm{k}\)
3 \(\frac{1}{2}\)
4 \(1\)