86559 ∫−12|x3−x|dx is equal to
(C) : We have,∫−12|x3−x|dx=∫−10(x3−x)dx−∫01(x3−x)dx+∫12(x3−x)dx=[x44−x22]−10−[x44−x22]01+[x44−x22]12=[(0−0)−(14−12)]−[(14−12)−(0−0)]+[(4−2)−(14−12)]=14+14+2+14=114
86567 The value of ∫π3π2(2+3sinx)sinx(1+cosx)dx is equal to
(C) : I=∫π/3π/22+3sinxsinx(1+cosx)dxI=∫π/3π/22sinx(1+cosx)dx+3∫π/3π/2sinxsinx(1+cosx)dxI=2∫π/3π/2dxsinx(1+cosx)+3∫π/3π/2dx(1+cosx)I=2I1+3I2I1=∫π/3π/2dxsinx(1+cosx)=∫π/3π/2dx2tanx21+tan2x2×2cos2x2I1=∫π/3π/2(1+tan2x2)⋅sec2x24tanx2Let,tanx2=t⇒12secx2dx=dtWhen, x=π2,t=1x=π3,t=13I1=12∫1/311+t2tdt=12[lnt+t22]131I1=12[(0+12)−(ln13+16)]=12(13+ln3)I1=16+12ln3I2=∫π/3π/2dx1+cosx=∫π/3π/211+cosx×1−cosx1−cosxdxI2=∫π/3π/21−cosx1−cosxdxI2=∫π/3π/21−cos2xsin2xdxI2=∫π/3π/2(cosec2x−cotxcosecx)dxI2=[cosecx−cotx]π/3π/2I2=1−(23−13)=1−13I2=1−13Putting value of I1 and I2 from equation (ii) and (iii) to equation (i),I=2I1+3I2I=2×(16+12ln3)+3(1−13)I=13+ln3+3−3I=103−3+loge3
86575 ∫24{|x−2|+|x−3|}dx=
(C): Given,I=∫24{|x−2|+|x−3|}dx|x−2|={x−2,x≥2−(x−2),x<2,|x−3|={x−3,x≥3−(x−3),x<3=∫13(|x−2|+|x−3|)dx+∫34(|x−2|+|x−3|)dx=∫23((x−2)+(−(x−3)))dx+∫34((x−2)+(x−3))dx=∫23[x−2−x+3]dx+∫34(x−2+x−3)dx=∫231dx+∫34(2x−5)dx=[x]23+[2x22−5x]34=(3−2)+(42−5(4))−(32−5(3))=1+(16−20)−(9−15)=1+(−4)−(−6)=1−4+6=7−4=3
86576 The value of the integral ∫−20dx12−x2−4x is
(B) : Given,I=∫−20dx12−x2−4x=∫−20dx12−x2−4x−4+4=∫−20dx16−(x+2)2=[sin−1(x+24)]−20=sin−1(24)=π6