(D): If \(\phi(\mathrm{a}-\mathrm{x})=\phi(\mathrm{x})\) We know that, \(\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\) So, \(I=\int_{0}^{a} x \phi(x) d x\) \(I=\int_{0}^{a}(a-x) \phi(a-x) d x\) \(I=\int_{0}^{a}(a-x) \phi(x) d x\) \(I=\int_{0}^{a} a \phi(x) d x-\int_{0}^{a} x \phi(x) d x\) \(I=a \int_{0}^{a} \phi(x) d x-I\) \(2 I=a \int_{0}^{a} \phi(x) d x \Rightarrow I=\frac{a}{2} \int_{0}^{a} \phi(x) d x\)
SCRA-2009
Integral Calculus
86557
What is \(\int_{0}^{1} \frac{\mathrm{x}^{2} \mathrm{dx}}{\sqrt{\mathrm{x}^{6}+1}}\) equal to?
(D): If \(\phi(\mathrm{a}-\mathrm{x})=\phi(\mathrm{x})\) We know that, \(\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\) So, \(I=\int_{0}^{a} x \phi(x) d x\) \(I=\int_{0}^{a}(a-x) \phi(a-x) d x\) \(I=\int_{0}^{a}(a-x) \phi(x) d x\) \(I=\int_{0}^{a} a \phi(x) d x-\int_{0}^{a} x \phi(x) d x\) \(I=a \int_{0}^{a} \phi(x) d x-I\) \(2 I=a \int_{0}^{a} \phi(x) d x \Rightarrow I=\frac{a}{2} \int_{0}^{a} \phi(x) d x\)
SCRA-2009
Integral Calculus
86557
What is \(\int_{0}^{1} \frac{\mathrm{x}^{2} \mathrm{dx}}{\sqrt{\mathrm{x}^{6}+1}}\) equal to?
(D): If \(\phi(\mathrm{a}-\mathrm{x})=\phi(\mathrm{x})\) We know that, \(\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\) So, \(I=\int_{0}^{a} x \phi(x) d x\) \(I=\int_{0}^{a}(a-x) \phi(a-x) d x\) \(I=\int_{0}^{a}(a-x) \phi(x) d x\) \(I=\int_{0}^{a} a \phi(x) d x-\int_{0}^{a} x \phi(x) d x\) \(I=a \int_{0}^{a} \phi(x) d x-I\) \(2 I=a \int_{0}^{a} \phi(x) d x \Rightarrow I=\frac{a}{2} \int_{0}^{a} \phi(x) d x\)
SCRA-2009
Integral Calculus
86557
What is \(\int_{0}^{1} \frac{\mathrm{x}^{2} \mathrm{dx}}{\sqrt{\mathrm{x}^{6}+1}}\) equal to?
(D): If \(\phi(\mathrm{a}-\mathrm{x})=\phi(\mathrm{x})\) We know that, \(\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\) So, \(I=\int_{0}^{a} x \phi(x) d x\) \(I=\int_{0}^{a}(a-x) \phi(a-x) d x\) \(I=\int_{0}^{a}(a-x) \phi(x) d x\) \(I=\int_{0}^{a} a \phi(x) d x-\int_{0}^{a} x \phi(x) d x\) \(I=a \int_{0}^{a} \phi(x) d x-I\) \(2 I=a \int_{0}^{a} \phi(x) d x \Rightarrow I=\frac{a}{2} \int_{0}^{a} \phi(x) d x\)
SCRA-2009
Integral Calculus
86557
What is \(\int_{0}^{1} \frac{\mathrm{x}^{2} \mathrm{dx}}{\sqrt{\mathrm{x}^{6}+1}}\) equal to?