86526 ∫0π2sinxsinx+cosxdx is equal to
(C) : I=∫0π2sinxsinx+cosxdxApply property,I=∫0π2sin(π2−x)sin(π2−x)+cos(π2−x)dxI=∫0π2cosxcosx+sinxdxOn adding equation (i) \& (ii), we get -2I=∫0π2(sinx+cosxsinx+cosx)dx=∫0π21dxI=12[x]0π/2=[π2]=π4
86527 ∫0∞dx(x2+a2)(x2+b2) is
(C) : Given,∫0∞dx(x2+a2)(x2+b2)=1b2−a2∫0∞(x2+b2)−(x2+a2)(x2+a2)(x2+b2)dx=1 b2−a2∫0∞[1x2+a2−1x2+b2]dx=1b2−a2[1atan−1xa−1btan−1xb]0∞=1b2−a2[π2a−π2b]=π2ab(a+b)
86528 The value of definite integral ∫0π2log(tanx)dx is
(A) : Let,=∫0π2log(tanx)dx=∫0π2log{tan(π2−x)}dx=∫0π2log(cotx)dxOn adding equation (i) and (ii), we get -∴2I=∫0π2log(tanx)dx+∫0π2log(cotx)dx2I=∫0π2[logtanx+logcotx]dx2I=∫0π2log(tanx⋅cotx)dx⇒2I=∫0π2log(1)dxI=0
86529 The value of I=∫01x|x−12|dx is
(C) : Given,I=∫01x|x−12|dx=−∫01/2x(x−12)dx+∫1/21x(x−12)dx=∫01/2(x2−x2)dx+∫1/21(x2−x2)dx=[x24−x33]01/2+[x33−x24]1/21=(116−124)+[(13−14)−124+116)]=(6−496)+(32−24−4+696)=1296=18