86462 ∫0π/2log(tanx)dx
(A) : Let,I=∫0π/2log(tanx)dxI=∫0π/2log[tan(π2−x)]dx=∫0π/2log(cotx)dxI=−∫0π/2log(tanx)dxAdding equation (i) and (ii), we get -2I=∫0π/2log(tanx)dx−∫0π/2log(tanx)dx2I=0I=0 (zero)
86463 The value of ∫−13[tan−1(xx2+1)+tan−1(x2+1x)]dx is :
(A) : Let,I=∫−13[tan−1(xx2+1)+tan−1(x2+1x)]dxWe know that,tan−1(xx2+1)+tan−1(x2+1x)=π2∵tan−1p+tan−1(1p)=π2∴I=∫−13π2dx=π2∫−131.dx=π2[x]−13=π2[3+1]=π2×4=2π
86464 The value of ∫0πdx5+3cosx is :
(A) : Let,I=∫0πdx5+3cosxPut, cosx=1−tan2x21+tan2x2I=∫0π15+3tan2x21+tan2x2dxI=∫0π15+5tan2x2+3−3tan2x21+tan2x2dxI=∫0π1+tan2x28+2tan2x2dx∴I=∫0πsec2x28+2tan2x2dxLet, tanx2=t12sec2x2dx=dtI=∫0∞dt4+t2I=∫0∞1(t)2+(2)2dt=[12tan−1(t2)]0∞=12[tan−1(∞)−tan−1(0)]=12[π2−0]=π4
86466 If In=∫0π4tannxdx, where n is positive integer, than I10+I8 is equal to
(D) : Given,In=∫0π/4tannxdxIn+2=∫0π/4tann+2xdxAdding equation (i) and (ii), we get -In+In+2=∫0π/4(tannx+tann+2x)dx=∫0π/4tannx(1+tan2x)dx=∫0π/4tannx×sec2xdxPut, tanx=tsec2xdx=dt If, t=0,tanx=0And, t=π4,tanx=1∵In+In+2=∫01(t)ndt=[tn+1n+1]01=[1n+1−0]In+In+2=(1n+1)If, n=8So, I8+I10=18+1=19
86467 ∫cos2x−cos2θcosx−cosθdx is equal to
(A) : I=∫cos2x−cos2θcosx−cosθdx=∫(2cos2x−1)−(2cos2θ−1)cosx−cosθdx=2∫cos2x−cos2θcosx−cosθdx=2∫(cosx−cosθ)(cosx+cosθ)cosx−cosθdx=2∫(cosx+cosθ)dx=2[sinx+xcosθ]+C