Theorem of Definite Integrals and its Properties
Integral Calculus

86462 0π/2log(tanx)dx

1 zero
2 2
3 π/3
4 π/4
Integral Calculus

86464 The value of 0πdx5+3cosx is :

1 π/4
2 π/8
3 π/2
4 zero
Integral Calculus

86466 If In=0π4tannxdx, where n is positive integer, than I10+I8 is equal to

1 9
2 17
3 18
4 19
Integral Calculus

86467 cos2xcos2θcosxcosθdx is equal to

1 2(sinx+xcosθ)+C
2 2(sinxxcosθ)+C
3 2(sinx+2xcosθ)+C
4 2(sinx2xcosθ)+C
Integral Calculus

86462 0π/2log(tanx)dx

1 zero
2 2
3 π/3
4 π/4
Integral Calculus

86463 The value of 13[tan1(xx2+1)+tan1(x2+1x)]dx is :

1 2π
2 π
3 π/2
4 π/4
Integral Calculus

86464 The value of 0πdx5+3cosx is :

1 π/4
2 π/8
3 π/2
4 zero
Integral Calculus

86466 If In=0π4tannxdx, where n is positive integer, than I10+I8 is equal to

1 9
2 17
3 18
4 19
Integral Calculus

86467 cos2xcos2θcosxcosθdx is equal to

1 2(sinx+xcosθ)+C
2 2(sinxxcosθ)+C
3 2(sinx+2xcosθ)+C
4 2(sinx2xcosθ)+C
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86462 0π/2log(tanx)dx

1 zero
2 2
3 π/3
4 π/4
Integral Calculus

86463 The value of 13[tan1(xx2+1)+tan1(x2+1x)]dx is :

1 2π
2 π
3 π/2
4 π/4
Integral Calculus

86464 The value of 0πdx5+3cosx is :

1 π/4
2 π/8
3 π/2
4 zero
Integral Calculus

86466 If In=0π4tannxdx, where n is positive integer, than I10+I8 is equal to

1 9
2 17
3 18
4 19
Integral Calculus

86467 cos2xcos2θcosxcosθdx is equal to

1 2(sinx+xcosθ)+C
2 2(sinxxcosθ)+C
3 2(sinx+2xcosθ)+C
4 2(sinx2xcosθ)+C
Integral Calculus

86462 0π/2log(tanx)dx

1 zero
2 2
3 π/3
4 π/4
Integral Calculus

86463 The value of 13[tan1(xx2+1)+tan1(x2+1x)]dx is :

1 2π
2 π
3 π/2
4 π/4
Integral Calculus

86464 The value of 0πdx5+3cosx is :

1 π/4
2 π/8
3 π/2
4 zero
Integral Calculus

86466 If In=0π4tannxdx, where n is positive integer, than I10+I8 is equal to

1 9
2 17
3 18
4 19
Integral Calculus

86467 cos2xcos2θcosxcosθdx is equal to

1 2(sinx+xcosθ)+C
2 2(sinxxcosθ)+C
3 2(sinx+2xcosθ)+C
4 2(sinx2xcosθ)+C
Integral Calculus

86462 0π/2log(tanx)dx

1 zero
2 2
3 π/3
4 π/4
Integral Calculus

86463 The value of 13[tan1(xx2+1)+tan1(x2+1x)]dx is :

1 2π
2 π
3 π/2
4 π/4
Integral Calculus

86464 The value of 0πdx5+3cosx is :

1 π/4
2 π/8
3 π/2
4 zero
Integral Calculus

86466 If In=0π4tannxdx, where n is positive integer, than I10+I8 is equal to

1 9
2 17
3 18
4 19
Integral Calculus

86467 cos2xcos2θcosxcosθdx is equal to

1 2(sinx+xcosθ)+C
2 2(sinxxcosθ)+C
3 2(sinx+2xcosθ)+C
4 2(sinx2xcosθ)+C