Definite Integral as Limit of a Sum
Integral Calculus

86458 \(\int_{0}^{\pi / 2} \frac{\sin x-\cos x}{1+\sin x \cdot \cos x} d x\) is equal to

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86459 \(\int_{0}^{\frac{3 \pi}{2}} \sin \left[\frac{2 x}{\pi}\right] \mathrm{dx}\), where [.] denotes the greatest integer function, is equal to

1 \(\frac{\pi}{2}(\sin 1+\cos 1)\)
2 \(\frac{\pi}{2}(\sin 1+\sin 2)\)
3 \(\frac{\pi}{2}(\sin 1-\cos 1)\)
4 \(\frac{\pi}{2}(\sin \pi+\sin 2)\)
Integral Calculus

86461 The value of \(\int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} \frac{x \sin x^{2}}{\sin x^{2}+\sin \left(\ln 6-x^{2}\right)} d x\) is

1 \(\frac{1}{4} \ln \frac{3}{2}\)
2 \(\frac{1}{2} \ln \frac{3}{2}\)
3 \(\ln \frac{3}{2}\)
4 \(\frac{1}{6} \ln \frac{3}{2}\)
Integral Calculus

86407 \(\int_{0}^{\infty} \frac{\mathrm{dx}}{1+\mathrm{e}^{\mathrm{x}}}\) equals

1 \(\log 2-1\)
2 \(\log 2\)
3 \(\log 4-1\)
4 \(-\log 2\)
Integral Calculus

86458 \(\int_{0}^{\pi / 2} \frac{\sin x-\cos x}{1+\sin x \cdot \cos x} d x\) is equal to

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86459 \(\int_{0}^{\frac{3 \pi}{2}} \sin \left[\frac{2 x}{\pi}\right] \mathrm{dx}\), where [.] denotes the greatest integer function, is equal to

1 \(\frac{\pi}{2}(\sin 1+\cos 1)\)
2 \(\frac{\pi}{2}(\sin 1+\sin 2)\)
3 \(\frac{\pi}{2}(\sin 1-\cos 1)\)
4 \(\frac{\pi}{2}(\sin \pi+\sin 2)\)
Integral Calculus

86461 The value of \(\int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} \frac{x \sin x^{2}}{\sin x^{2}+\sin \left(\ln 6-x^{2}\right)} d x\) is

1 \(\frac{1}{4} \ln \frac{3}{2}\)
2 \(\frac{1}{2} \ln \frac{3}{2}\)
3 \(\ln \frac{3}{2}\)
4 \(\frac{1}{6} \ln \frac{3}{2}\)
Integral Calculus

86407 \(\int_{0}^{\infty} \frac{\mathrm{dx}}{1+\mathrm{e}^{\mathrm{x}}}\) equals

1 \(\log 2-1\)
2 \(\log 2\)
3 \(\log 4-1\)
4 \(-\log 2\)
Integral Calculus

86458 \(\int_{0}^{\pi / 2} \frac{\sin x-\cos x}{1+\sin x \cdot \cos x} d x\) is equal to

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86459 \(\int_{0}^{\frac{3 \pi}{2}} \sin \left[\frac{2 x}{\pi}\right] \mathrm{dx}\), where [.] denotes the greatest integer function, is equal to

1 \(\frac{\pi}{2}(\sin 1+\cos 1)\)
2 \(\frac{\pi}{2}(\sin 1+\sin 2)\)
3 \(\frac{\pi}{2}(\sin 1-\cos 1)\)
4 \(\frac{\pi}{2}(\sin \pi+\sin 2)\)
Integral Calculus

86461 The value of \(\int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} \frac{x \sin x^{2}}{\sin x^{2}+\sin \left(\ln 6-x^{2}\right)} d x\) is

1 \(\frac{1}{4} \ln \frac{3}{2}\)
2 \(\frac{1}{2} \ln \frac{3}{2}\)
3 \(\ln \frac{3}{2}\)
4 \(\frac{1}{6} \ln \frac{3}{2}\)
Integral Calculus

86407 \(\int_{0}^{\infty} \frac{\mathrm{dx}}{1+\mathrm{e}^{\mathrm{x}}}\) equals

1 \(\log 2-1\)
2 \(\log 2\)
3 \(\log 4-1\)
4 \(-\log 2\)
Integral Calculus

86458 \(\int_{0}^{\pi / 2} \frac{\sin x-\cos x}{1+\sin x \cdot \cos x} d x\) is equal to

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86459 \(\int_{0}^{\frac{3 \pi}{2}} \sin \left[\frac{2 x}{\pi}\right] \mathrm{dx}\), where [.] denotes the greatest integer function, is equal to

1 \(\frac{\pi}{2}(\sin 1+\cos 1)\)
2 \(\frac{\pi}{2}(\sin 1+\sin 2)\)
3 \(\frac{\pi}{2}(\sin 1-\cos 1)\)
4 \(\frac{\pi}{2}(\sin \pi+\sin 2)\)
Integral Calculus

86461 The value of \(\int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} \frac{x \sin x^{2}}{\sin x^{2}+\sin \left(\ln 6-x^{2}\right)} d x\) is

1 \(\frac{1}{4} \ln \frac{3}{2}\)
2 \(\frac{1}{2} \ln \frac{3}{2}\)
3 \(\ln \frac{3}{2}\)
4 \(\frac{1}{6} \ln \frac{3}{2}\)
Integral Calculus

86407 \(\int_{0}^{\infty} \frac{\mathrm{dx}}{1+\mathrm{e}^{\mathrm{x}}}\) equals

1 \(\log 2-1\)
2 \(\log 2\)
3 \(\log 4-1\)
4 \(-\log 2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here