Definite Integral as Limit of a Sum
Integral Calculus

86426 \(\int_{0}^{1} \frac{d}{d x}\left[\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\right] d x\) is equal to

1 0
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86428 \(\int_{0}^{1} x \sin \pi x d x\) is equal to

1 1
2 \(1 / 2\)
3 \(\pi\)
4 \(1 / \pi\)
Integral Calculus

86372 \(\int_{-\pi / 2}^{\pi / 2} \sin ^{2} x d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{3 \pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{3}\)
Integral Calculus

86383 \(\int_{0}^{1000} \mathrm{e}^{\mathrm{x}-[\mathrm{x}]} \mathrm{dx}\) is

1 \(\mathrm{e}^{1000}-1\)
2 \(\frac{e^{1000}-1}{e-1}\)
3 \(1000(\mathrm{e}-1)\)
4 \(\frac{\mathrm{e}-1}{1000}\)
Integral Calculus

86401 \(\int_{1}^{2} \frac{x^{3}-1}{x^{2}} d x=\)

1 \(\frac{5}{3}\)
2 \(\frac{3}{5}\)
3 1
4 -1
Integral Calculus

86426 \(\int_{0}^{1} \frac{d}{d x}\left[\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\right] d x\) is equal to

1 0
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86428 \(\int_{0}^{1} x \sin \pi x d x\) is equal to

1 1
2 \(1 / 2\)
3 \(\pi\)
4 \(1 / \pi\)
Integral Calculus

86372 \(\int_{-\pi / 2}^{\pi / 2} \sin ^{2} x d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{3 \pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{3}\)
Integral Calculus

86383 \(\int_{0}^{1000} \mathrm{e}^{\mathrm{x}-[\mathrm{x}]} \mathrm{dx}\) is

1 \(\mathrm{e}^{1000}-1\)
2 \(\frac{e^{1000}-1}{e-1}\)
3 \(1000(\mathrm{e}-1)\)
4 \(\frac{\mathrm{e}-1}{1000}\)
Integral Calculus

86401 \(\int_{1}^{2} \frac{x^{3}-1}{x^{2}} d x=\)

1 \(\frac{5}{3}\)
2 \(\frac{3}{5}\)
3 1
4 -1
Integral Calculus

86426 \(\int_{0}^{1} \frac{d}{d x}\left[\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\right] d x\) is equal to

1 0
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86428 \(\int_{0}^{1} x \sin \pi x d x\) is equal to

1 1
2 \(1 / 2\)
3 \(\pi\)
4 \(1 / \pi\)
Integral Calculus

86372 \(\int_{-\pi / 2}^{\pi / 2} \sin ^{2} x d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{3 \pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{3}\)
Integral Calculus

86383 \(\int_{0}^{1000} \mathrm{e}^{\mathrm{x}-[\mathrm{x}]} \mathrm{dx}\) is

1 \(\mathrm{e}^{1000}-1\)
2 \(\frac{e^{1000}-1}{e-1}\)
3 \(1000(\mathrm{e}-1)\)
4 \(\frac{\mathrm{e}-1}{1000}\)
Integral Calculus

86401 \(\int_{1}^{2} \frac{x^{3}-1}{x^{2}} d x=\)

1 \(\frac{5}{3}\)
2 \(\frac{3}{5}\)
3 1
4 -1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86426 \(\int_{0}^{1} \frac{d}{d x}\left[\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\right] d x\) is equal to

1 0
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86428 \(\int_{0}^{1} x \sin \pi x d x\) is equal to

1 1
2 \(1 / 2\)
3 \(\pi\)
4 \(1 / \pi\)
Integral Calculus

86372 \(\int_{-\pi / 2}^{\pi / 2} \sin ^{2} x d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{3 \pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{3}\)
Integral Calculus

86383 \(\int_{0}^{1000} \mathrm{e}^{\mathrm{x}-[\mathrm{x}]} \mathrm{dx}\) is

1 \(\mathrm{e}^{1000}-1\)
2 \(\frac{e^{1000}-1}{e-1}\)
3 \(1000(\mathrm{e}-1)\)
4 \(\frac{\mathrm{e}-1}{1000}\)
Integral Calculus

86401 \(\int_{1}^{2} \frac{x^{3}-1}{x^{2}} d x=\)

1 \(\frac{5}{3}\)
2 \(\frac{3}{5}\)
3 1
4 -1
Integral Calculus

86426 \(\int_{0}^{1} \frac{d}{d x}\left[\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\right] d x\) is equal to

1 0
2 \(\pi\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86428 \(\int_{0}^{1} x \sin \pi x d x\) is equal to

1 1
2 \(1 / 2\)
3 \(\pi\)
4 \(1 / \pi\)
Integral Calculus

86372 \(\int_{-\pi / 2}^{\pi / 2} \sin ^{2} x d x=\)

1 \(\frac{\pi}{4}\)
2 \(\frac{3 \pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\frac{\pi}{3}\)
Integral Calculus

86383 \(\int_{0}^{1000} \mathrm{e}^{\mathrm{x}-[\mathrm{x}]} \mathrm{dx}\) is

1 \(\mathrm{e}^{1000}-1\)
2 \(\frac{e^{1000}-1}{e-1}\)
3 \(1000(\mathrm{e}-1)\)
4 \(\frac{\mathrm{e}-1}{1000}\)
Integral Calculus

86401 \(\int_{1}^{2} \frac{x^{3}-1}{x^{2}} d x=\)

1 \(\frac{5}{3}\)
2 \(\frac{3}{5}\)
3 1
4 -1