Definite Integral as Limit of a Sum
Integral Calculus

86419 The value of \(\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \frac{(2 j-1)+8 n}{(2 j-1)+4 n}\) is equal to

1 \(5+\log _{\mathrm{e}}\left(\frac{3}{2}\right)\)
2 \(2-\log _{\mathrm{e}}\left(\frac{2}{3}\right)\)
3 \(3+2 \log _{\mathrm{e}}\left(\frac{2}{3}\right)\)
4 \(1+2 \log _{\mathrm{e}}\left(\frac{3}{2}\right)\)
Integral Calculus

86460 \(\int_{1}^{4} \log _{\mathrm{e}}[x] d x\) equals

1 \(\log _{\mathrm{e}} 2\)
2 \(\log _{\mathrm{e}} 3\)
3 \(\log _{\mathrm{e}} 6\)
4 None of the above
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86419 The value of \(\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \frac{(2 j-1)+8 n}{(2 j-1)+4 n}\) is equal to

1 \(5+\log _{\mathrm{e}}\left(\frac{3}{2}\right)\)
2 \(2-\log _{\mathrm{e}}\left(\frac{2}{3}\right)\)
3 \(3+2 \log _{\mathrm{e}}\left(\frac{2}{3}\right)\)
4 \(1+2 \log _{\mathrm{e}}\left(\frac{3}{2}\right)\)
Integral Calculus

86460 \(\int_{1}^{4} \log _{\mathrm{e}}[x] d x\) equals

1 \(\log _{\mathrm{e}} 2\)
2 \(\log _{\mathrm{e}} 3\)
3 \(\log _{\mathrm{e}} 6\)
4 None of the above