Definite Integral as Limit of a Sum
Integral Calculus

86404 Let \(f\) be the function on \([-\pi, \pi]\) given by \(f(0)=\) 9 and \(f(x)=\sin \left(\frac{9 x}{2}\right) / \sin \left(\frac{x}{2}\right)\) for \(x \neq 0\). The value
of \(\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) d x\) is

1 0
2 4
3 8
4 None of these
Integral Calculus

86396 The value of the integral \(\int_{1}^{2}\left(\frac{t^{4}+1}{\mathbf{t}^{6}+1}\right) d t\) is

1 \(\tan ^{-1} \frac{1}{2}+\frac{1}{3} \tan ^{-1} 8-\frac{\pi}{3}\)
2 \(\tan ^{-1} 2-\frac{1}{3} \tan ^{-1} 8+\frac{\pi}{3}\)
3 \(\tan ^{-1} 2+\frac{1}{3} \tan ^{-1} 8-\frac{\pi}{3}\)
4 \(\tan ^{-1} 2+\frac{1}{3} \tan ^{-1} 8+\frac{\pi}{3}\)
Integral Calculus

86397 The value of the integral \(\int_{-2}^{2} \frac{\left|x^{3}+x\right|}{\left(e^{x|x|}+1\right)} d x\) is equal to:

1 \(5 \mathrm{e}^{2}\)
2 \(3 \mathrm{e}^{-2}\)
3 4
4 6
Integral Calculus

86398 If \(\int_{1}^{4} x \sqrt{x^{2}-1} d x=\alpha(k)^{\beta}\), then \(\alpha \beta=\)

1 \(\frac{9}{2}\)
2 \(\frac{1}{2}\)
3 \(\frac{1}{3}\)
4 \(\frac{3}{2}\)
Integral Calculus

86404 Let \(f\) be the function on \([-\pi, \pi]\) given by \(f(0)=\) 9 and \(f(x)=\sin \left(\frac{9 x}{2}\right) / \sin \left(\frac{x}{2}\right)\) for \(x \neq 0\). The value
of \(\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) d x\) is

1 0
2 4
3 8
4 None of these
Integral Calculus

86396 The value of the integral \(\int_{1}^{2}\left(\frac{t^{4}+1}{\mathbf{t}^{6}+1}\right) d t\) is

1 \(\tan ^{-1} \frac{1}{2}+\frac{1}{3} \tan ^{-1} 8-\frac{\pi}{3}\)
2 \(\tan ^{-1} 2-\frac{1}{3} \tan ^{-1} 8+\frac{\pi}{3}\)
3 \(\tan ^{-1} 2+\frac{1}{3} \tan ^{-1} 8-\frac{\pi}{3}\)
4 \(\tan ^{-1} 2+\frac{1}{3} \tan ^{-1} 8+\frac{\pi}{3}\)
Integral Calculus

86397 The value of the integral \(\int_{-2}^{2} \frac{\left|x^{3}+x\right|}{\left(e^{x|x|}+1\right)} d x\) is equal to:

1 \(5 \mathrm{e}^{2}\)
2 \(3 \mathrm{e}^{-2}\)
3 4
4 6
Integral Calculus

86398 If \(\int_{1}^{4} x \sqrt{x^{2}-1} d x=\alpha(k)^{\beta}\), then \(\alpha \beta=\)

1 \(\frac{9}{2}\)
2 \(\frac{1}{2}\)
3 \(\frac{1}{3}\)
4 \(\frac{3}{2}\)
Integral Calculus

86404 Let \(f\) be the function on \([-\pi, \pi]\) given by \(f(0)=\) 9 and \(f(x)=\sin \left(\frac{9 x}{2}\right) / \sin \left(\frac{x}{2}\right)\) for \(x \neq 0\). The value
of \(\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) d x\) is

1 0
2 4
3 8
4 None of these
Integral Calculus

86396 The value of the integral \(\int_{1}^{2}\left(\frac{t^{4}+1}{\mathbf{t}^{6}+1}\right) d t\) is

1 \(\tan ^{-1} \frac{1}{2}+\frac{1}{3} \tan ^{-1} 8-\frac{\pi}{3}\)
2 \(\tan ^{-1} 2-\frac{1}{3} \tan ^{-1} 8+\frac{\pi}{3}\)
3 \(\tan ^{-1} 2+\frac{1}{3} \tan ^{-1} 8-\frac{\pi}{3}\)
4 \(\tan ^{-1} 2+\frac{1}{3} \tan ^{-1} 8+\frac{\pi}{3}\)
Integral Calculus

86397 The value of the integral \(\int_{-2}^{2} \frac{\left|x^{3}+x\right|}{\left(e^{x|x|}+1\right)} d x\) is equal to:

1 \(5 \mathrm{e}^{2}\)
2 \(3 \mathrm{e}^{-2}\)
3 4
4 6
Integral Calculus

86398 If \(\int_{1}^{4} x \sqrt{x^{2}-1} d x=\alpha(k)^{\beta}\), then \(\alpha \beta=\)

1 \(\frac{9}{2}\)
2 \(\frac{1}{2}\)
3 \(\frac{1}{3}\)
4 \(\frac{3}{2}\)
Integral Calculus

86404 Let \(f\) be the function on \([-\pi, \pi]\) given by \(f(0)=\) 9 and \(f(x)=\sin \left(\frac{9 x}{2}\right) / \sin \left(\frac{x}{2}\right)\) for \(x \neq 0\). The value
of \(\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) d x\) is

1 0
2 4
3 8
4 None of these
Integral Calculus

86396 The value of the integral \(\int_{1}^{2}\left(\frac{t^{4}+1}{\mathbf{t}^{6}+1}\right) d t\) is

1 \(\tan ^{-1} \frac{1}{2}+\frac{1}{3} \tan ^{-1} 8-\frac{\pi}{3}\)
2 \(\tan ^{-1} 2-\frac{1}{3} \tan ^{-1} 8+\frac{\pi}{3}\)
3 \(\tan ^{-1} 2+\frac{1}{3} \tan ^{-1} 8-\frac{\pi}{3}\)
4 \(\tan ^{-1} 2+\frac{1}{3} \tan ^{-1} 8+\frac{\pi}{3}\)
Integral Calculus

86397 The value of the integral \(\int_{-2}^{2} \frac{\left|x^{3}+x\right|}{\left(e^{x|x|}+1\right)} d x\) is equal to:

1 \(5 \mathrm{e}^{2}\)
2 \(3 \mathrm{e}^{-2}\)
3 4
4 6
Integral Calculus

86398 If \(\int_{1}^{4} x \sqrt{x^{2}-1} d x=\alpha(k)^{\beta}\), then \(\alpha \beta=\)

1 \(\frac{9}{2}\)
2 \(\frac{1}{2}\)
3 \(\frac{1}{3}\)
4 \(\frac{3}{2}\)