86375 ∫−π/2π/2log(2−sinx2+sinx)dx
(D) : Given,∫−π/2π/2log(2−sinx2+sinx)dxLet, f(x)=log(2−sinx2+sinx)Then, f(−x)=log(2−sin(−x)2+sin(−x))=log(2+sinx2−sinx)=−log(2−sinx2+sinx)=−f(x)∴f(x) is an odd function.So, ∫−π/2π/2f(x)dx=0
86437 If ∫bx3dx=0 and if ∫bx2dx=23, then a and b are respectively
(B) : Given,∫abx3dx=0[x44]ab=0b4−a44=0b4−a4=0b4=a4b=±aand, ∫abx2dx=23[x33]ab=23b3−a33=23b3−a3=2Let, b = aThen, b3−a3=a3−a3=0≠2Now, let b=−aThen, bβ−a3⇒(−a)3−a3=2⇒−2a3=2⇒a3=−1a=−1b=−a=−(−1)=1So,(a,b)=(−1,1)
86379 ∫0π/2sin2x⋅logtanxdx is equal to
(A) : Let I=∫0π/2sin2x⋅logtanxdxI=∫0π/2(logtanx)sin2xdxI=∫0π/2logtan(π2−x)sin2(π2−x)dx[∵∫0af(x)dx=∫0af(a−x)dx]I=∫0π/2logcotx⋅sin2xdx[∵sin(π−2x)=sin2x]On adding equation (i) and (ii), we get2I=∫0π/2(logtanx)sin2xdx+∫0π/2(logcotx)sin2xdx2I=∫0π/2[(logtanx)sin2x+(logcotx)sin2x]dx∵logm+logn=logm.n2I=∫0π/2sin2xlog(tanx⋅cotx)dx∵tanx⋅cotx=12I=∫0π/2sin2xlog(1)dx2I=0∵log1=0I=0
86380 If y+1+y2=ex, then the value of y is
(D) : Given,y+1+y2=ex1+y2=ex−ySquaring on both side, we get -1+y2=(ex−y)21+y2=e2x+y2−2exye2x−1=2exyy=e2x−12ex=12[ex−e−x]
86381 If ∫0t2xf(x)dx=25t5,t>0, then f(425) is
(A) : Given,∫0t2x.f(x)dx=25t5;t>0Differentiating both side, we get -t2f(t2)(2t)=2t4 (By Leibnitz theorem) f(t2)=tSo, f(425)=25