86373
\(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x=\)
1 0
2 9
3 18
4 1
Explanation:
(A) : Given, \(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x\) Let, \(f(x)=\frac{x^{3}}{4-x^{2}}\) \(f(-x)=\frac{(-x)^{3}}{4-(-x)^{2}}=\frac{-x^{3}}{4-x^{2}}=-f(x)\) \(\therefore \mathrm{f}(\mathrm{x})\) is an odd function - So, \(\quad \mathrm{I}=\int_{-9}^{9} \frac{\mathrm{x}^{3}}{4-\mathrm{x}^{2}} \mathrm{dx}=0\)
MHT CET-2019
Integral Calculus
86374
If \(\int_{0}^{\pi / 2} \log \cos x d x=\frac{\pi}{2} \log \left(\frac{1}{2}\right)\) then \(\int_{0}^{\pi / 2} \log \sec x \mathrm{dx}=\)
86373
\(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x=\)
1 0
2 9
3 18
4 1
Explanation:
(A) : Given, \(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x\) Let, \(f(x)=\frac{x^{3}}{4-x^{2}}\) \(f(-x)=\frac{(-x)^{3}}{4-(-x)^{2}}=\frac{-x^{3}}{4-x^{2}}=-f(x)\) \(\therefore \mathrm{f}(\mathrm{x})\) is an odd function - So, \(\quad \mathrm{I}=\int_{-9}^{9} \frac{\mathrm{x}^{3}}{4-\mathrm{x}^{2}} \mathrm{dx}=0\)
MHT CET-2019
Integral Calculus
86374
If \(\int_{0}^{\pi / 2} \log \cos x d x=\frac{\pi}{2} \log \left(\frac{1}{2}\right)\) then \(\int_{0}^{\pi / 2} \log \sec x \mathrm{dx}=\)
86373
\(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x=\)
1 0
2 9
3 18
4 1
Explanation:
(A) : Given, \(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x\) Let, \(f(x)=\frac{x^{3}}{4-x^{2}}\) \(f(-x)=\frac{(-x)^{3}}{4-(-x)^{2}}=\frac{-x^{3}}{4-x^{2}}=-f(x)\) \(\therefore \mathrm{f}(\mathrm{x})\) is an odd function - So, \(\quad \mathrm{I}=\int_{-9}^{9} \frac{\mathrm{x}^{3}}{4-\mathrm{x}^{2}} \mathrm{dx}=0\)
MHT CET-2019
Integral Calculus
86374
If \(\int_{0}^{\pi / 2} \log \cos x d x=\frac{\pi}{2} \log \left(\frac{1}{2}\right)\) then \(\int_{0}^{\pi / 2} \log \sec x \mathrm{dx}=\)
86373
\(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x=\)
1 0
2 9
3 18
4 1
Explanation:
(A) : Given, \(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x\) Let, \(f(x)=\frac{x^{3}}{4-x^{2}}\) \(f(-x)=\frac{(-x)^{3}}{4-(-x)^{2}}=\frac{-x^{3}}{4-x^{2}}=-f(x)\) \(\therefore \mathrm{f}(\mathrm{x})\) is an odd function - So, \(\quad \mathrm{I}=\int_{-9}^{9} \frac{\mathrm{x}^{3}}{4-\mathrm{x}^{2}} \mathrm{dx}=0\)
MHT CET-2019
Integral Calculus
86374
If \(\int_{0}^{\pi / 2} \log \cos x d x=\frac{\pi}{2} \log \left(\frac{1}{2}\right)\) then \(\int_{0}^{\pi / 2} \log \sec x \mathrm{dx}=\)