Definite Integral as Limit of a Sum
Integral Calculus

86370 If \(\frac{1}{(3-5 x)(2+3 x)}=\frac{A}{3-5 x}+\frac{B}{2+3 x}\), then \(A: B i\)

1 \(5: 3\)
2 \(2: 3\)
3 \(3: 2\)
4 \(3: 5\)
Integral Calculus

86371 \(\int \mathrm{e}^{\tan ^{-1} x}\left(1+\frac{\mathrm{x}}{1+\mathrm{x}^{2}}\right) \mathrm{dx}\) is equal to

1 \(\frac{1}{2} \mathrm{e}^{\tan ^{-1} x}+C\)
2 \(\frac{1}{2} \mathrm{xe}^{\tan ^{-1} \mathrm{x}}+\mathrm{C}\)
3 \(\mathrm{xe}^{\tan ^{-1} \mathrm{x}}+\mathrm{C}\)
4 \(\mathrm{e}^{\tan ^{-1} x}+\mathrm{C}\)
Integral Calculus

86373 \(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x=\)

1 0
2 9
3 18
4 1
Integral Calculus

86374 If \(\int_{0}^{\pi / 2} \log \cos x d x=\frac{\pi}{2} \log \left(\frac{1}{2}\right)\) then
\(\int_{0}^{\pi / 2} \log \sec x \mathrm{dx}=\)

1 \(\frac{\pi}{2} \log \left(\frac{1}{2}\right)\)
2 \(1-\frac{\pi}{2} \log \left(\frac{1}{2}\right)\)
3 \(1+\frac{\pi}{2} \log \left(\frac{1}{2}\right)\)
4 \(\frac{\pi}{2} \log 2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86370 If \(\frac{1}{(3-5 x)(2+3 x)}=\frac{A}{3-5 x}+\frac{B}{2+3 x}\), then \(A: B i\)

1 \(5: 3\)
2 \(2: 3\)
3 \(3: 2\)
4 \(3: 5\)
Integral Calculus

86371 \(\int \mathrm{e}^{\tan ^{-1} x}\left(1+\frac{\mathrm{x}}{1+\mathrm{x}^{2}}\right) \mathrm{dx}\) is equal to

1 \(\frac{1}{2} \mathrm{e}^{\tan ^{-1} x}+C\)
2 \(\frac{1}{2} \mathrm{xe}^{\tan ^{-1} \mathrm{x}}+\mathrm{C}\)
3 \(\mathrm{xe}^{\tan ^{-1} \mathrm{x}}+\mathrm{C}\)
4 \(\mathrm{e}^{\tan ^{-1} x}+\mathrm{C}\)
Integral Calculus

86373 \(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x=\)

1 0
2 9
3 18
4 1
Integral Calculus

86374 If \(\int_{0}^{\pi / 2} \log \cos x d x=\frac{\pi}{2} \log \left(\frac{1}{2}\right)\) then
\(\int_{0}^{\pi / 2} \log \sec x \mathrm{dx}=\)

1 \(\frac{\pi}{2} \log \left(\frac{1}{2}\right)\)
2 \(1-\frac{\pi}{2} \log \left(\frac{1}{2}\right)\)
3 \(1+\frac{\pi}{2} \log \left(\frac{1}{2}\right)\)
4 \(\frac{\pi}{2} \log 2\)
Integral Calculus

86370 If \(\frac{1}{(3-5 x)(2+3 x)}=\frac{A}{3-5 x}+\frac{B}{2+3 x}\), then \(A: B i\)

1 \(5: 3\)
2 \(2: 3\)
3 \(3: 2\)
4 \(3: 5\)
Integral Calculus

86371 \(\int \mathrm{e}^{\tan ^{-1} x}\left(1+\frac{\mathrm{x}}{1+\mathrm{x}^{2}}\right) \mathrm{dx}\) is equal to

1 \(\frac{1}{2} \mathrm{e}^{\tan ^{-1} x}+C\)
2 \(\frac{1}{2} \mathrm{xe}^{\tan ^{-1} \mathrm{x}}+\mathrm{C}\)
3 \(\mathrm{xe}^{\tan ^{-1} \mathrm{x}}+\mathrm{C}\)
4 \(\mathrm{e}^{\tan ^{-1} x}+\mathrm{C}\)
Integral Calculus

86373 \(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x=\)

1 0
2 9
3 18
4 1
Integral Calculus

86374 If \(\int_{0}^{\pi / 2} \log \cos x d x=\frac{\pi}{2} \log \left(\frac{1}{2}\right)\) then
\(\int_{0}^{\pi / 2} \log \sec x \mathrm{dx}=\)

1 \(\frac{\pi}{2} \log \left(\frac{1}{2}\right)\)
2 \(1-\frac{\pi}{2} \log \left(\frac{1}{2}\right)\)
3 \(1+\frac{\pi}{2} \log \left(\frac{1}{2}\right)\)
4 \(\frac{\pi}{2} \log 2\)
Integral Calculus

86370 If \(\frac{1}{(3-5 x)(2+3 x)}=\frac{A}{3-5 x}+\frac{B}{2+3 x}\), then \(A: B i\)

1 \(5: 3\)
2 \(2: 3\)
3 \(3: 2\)
4 \(3: 5\)
Integral Calculus

86371 \(\int \mathrm{e}^{\tan ^{-1} x}\left(1+\frac{\mathrm{x}}{1+\mathrm{x}^{2}}\right) \mathrm{dx}\) is equal to

1 \(\frac{1}{2} \mathrm{e}^{\tan ^{-1} x}+C\)
2 \(\frac{1}{2} \mathrm{xe}^{\tan ^{-1} \mathrm{x}}+\mathrm{C}\)
3 \(\mathrm{xe}^{\tan ^{-1} \mathrm{x}}+\mathrm{C}\)
4 \(\mathrm{e}^{\tan ^{-1} x}+\mathrm{C}\)
Integral Calculus

86373 \(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x=\)

1 0
2 9
3 18
4 1
Integral Calculus

86374 If \(\int_{0}^{\pi / 2} \log \cos x d x=\frac{\pi}{2} \log \left(\frac{1}{2}\right)\) then
\(\int_{0}^{\pi / 2} \log \sec x \mathrm{dx}=\)

1 \(\frac{\pi}{2} \log \left(\frac{1}{2}\right)\)
2 \(1-\frac{\pi}{2} \log \left(\frac{1}{2}\right)\)
3 \(1+\frac{\pi}{2} \log \left(\frac{1}{2}\right)\)
4 \(\frac{\pi}{2} \log 2\)