Definite Integral as Limit of a Sum
Integral Calculus

86436 \(\int_{-1}^{1} \log \left(\frac{2-x}{2+x}\right) d x=\)

1 -1
2 0
3 1
4 2
Integral Calculus

86367 If \(\int \frac{3 x+1}{(x-1)(x-2)(x-3)} d x=A \log |x-1|+B \log\)
\(|x-2|+C \log |x-3|+c\), then the values of \(A, B\) and \(C\) are respectively,

1 \(2,-7,-5\)
2 \(5,-7,5\)
3 \(2,-7,5\)
4 \(5,-7,-5\)
Integral Calculus

86368 \(\int \mathrm{e}^{\sin x} \cdot\left(\frac{\sin x+1}{\sec x}\right) d x\) is equal to

1 \(\sin \mathrm{x} \cdot \mathrm{e}^{\sin x}+\mathrm{C}\)
2 \(\cos \mathrm{x} \cdot \mathrm{e}^{\sin \mathrm{x}}+\mathrm{C}\)
3 \(e^{\sin x}+C\)
4 \(\mathrm{e}^{\sin x}(\sin \mathrm{x}+1)+\mathrm{C}\)
Integral Calculus

86369 \(\int e^{x}\left[\frac{\sin x+\cos x}{1-\sin ^{2} x}\right] d x\) is

1 \(\left(e^{x} \cdot \cos e c x\right)+C\)
2 \(\mathrm{e}^{\mathrm{x}} \cot \mathrm{x}+\mathrm{C}\)
3 \(\left(e^{x} \cdot \sec x\right)+C\)
4 \(\mathrm{e}^{\mathrm{x}} \tan \mathrm{x}+\mathrm{C}\)
Integral Calculus

86436 \(\int_{-1}^{1} \log \left(\frac{2-x}{2+x}\right) d x=\)

1 -1
2 0
3 1
4 2
Integral Calculus

86367 If \(\int \frac{3 x+1}{(x-1)(x-2)(x-3)} d x=A \log |x-1|+B \log\)
\(|x-2|+C \log |x-3|+c\), then the values of \(A, B\) and \(C\) are respectively,

1 \(2,-7,-5\)
2 \(5,-7,5\)
3 \(2,-7,5\)
4 \(5,-7,-5\)
Integral Calculus

86368 \(\int \mathrm{e}^{\sin x} \cdot\left(\frac{\sin x+1}{\sec x}\right) d x\) is equal to

1 \(\sin \mathrm{x} \cdot \mathrm{e}^{\sin x}+\mathrm{C}\)
2 \(\cos \mathrm{x} \cdot \mathrm{e}^{\sin \mathrm{x}}+\mathrm{C}\)
3 \(e^{\sin x}+C\)
4 \(\mathrm{e}^{\sin x}(\sin \mathrm{x}+1)+\mathrm{C}\)
Integral Calculus

86369 \(\int e^{x}\left[\frac{\sin x+\cos x}{1-\sin ^{2} x}\right] d x\) is

1 \(\left(e^{x} \cdot \cos e c x\right)+C\)
2 \(\mathrm{e}^{\mathrm{x}} \cot \mathrm{x}+\mathrm{C}\)
3 \(\left(e^{x} \cdot \sec x\right)+C\)
4 \(\mathrm{e}^{\mathrm{x}} \tan \mathrm{x}+\mathrm{C}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86436 \(\int_{-1}^{1} \log \left(\frac{2-x}{2+x}\right) d x=\)

1 -1
2 0
3 1
4 2
Integral Calculus

86367 If \(\int \frac{3 x+1}{(x-1)(x-2)(x-3)} d x=A \log |x-1|+B \log\)
\(|x-2|+C \log |x-3|+c\), then the values of \(A, B\) and \(C\) are respectively,

1 \(2,-7,-5\)
2 \(5,-7,5\)
3 \(2,-7,5\)
4 \(5,-7,-5\)
Integral Calculus

86368 \(\int \mathrm{e}^{\sin x} \cdot\left(\frac{\sin x+1}{\sec x}\right) d x\) is equal to

1 \(\sin \mathrm{x} \cdot \mathrm{e}^{\sin x}+\mathrm{C}\)
2 \(\cos \mathrm{x} \cdot \mathrm{e}^{\sin \mathrm{x}}+\mathrm{C}\)
3 \(e^{\sin x}+C\)
4 \(\mathrm{e}^{\sin x}(\sin \mathrm{x}+1)+\mathrm{C}\)
Integral Calculus

86369 \(\int e^{x}\left[\frac{\sin x+\cos x}{1-\sin ^{2} x}\right] d x\) is

1 \(\left(e^{x} \cdot \cos e c x\right)+C\)
2 \(\mathrm{e}^{\mathrm{x}} \cot \mathrm{x}+\mathrm{C}\)
3 \(\left(e^{x} \cdot \sec x\right)+C\)
4 \(\mathrm{e}^{\mathrm{x}} \tan \mathrm{x}+\mathrm{C}\)
Integral Calculus

86436 \(\int_{-1}^{1} \log \left(\frac{2-x}{2+x}\right) d x=\)

1 -1
2 0
3 1
4 2
Integral Calculus

86367 If \(\int \frac{3 x+1}{(x-1)(x-2)(x-3)} d x=A \log |x-1|+B \log\)
\(|x-2|+C \log |x-3|+c\), then the values of \(A, B\) and \(C\) are respectively,

1 \(2,-7,-5\)
2 \(5,-7,5\)
3 \(2,-7,5\)
4 \(5,-7,-5\)
Integral Calculus

86368 \(\int \mathrm{e}^{\sin x} \cdot\left(\frac{\sin x+1}{\sec x}\right) d x\) is equal to

1 \(\sin \mathrm{x} \cdot \mathrm{e}^{\sin x}+\mathrm{C}\)
2 \(\cos \mathrm{x} \cdot \mathrm{e}^{\sin \mathrm{x}}+\mathrm{C}\)
3 \(e^{\sin x}+C\)
4 \(\mathrm{e}^{\sin x}(\sin \mathrm{x}+1)+\mathrm{C}\)
Integral Calculus

86369 \(\int e^{x}\left[\frac{\sin x+\cos x}{1-\sin ^{2} x}\right] d x\) is

1 \(\left(e^{x} \cdot \cos e c x\right)+C\)
2 \(\mathrm{e}^{\mathrm{x}} \cot \mathrm{x}+\mathrm{C}\)
3 \(\left(e^{x} \cdot \sec x\right)+C\)
4 \(\mathrm{e}^{\mathrm{x}} \tan \mathrm{x}+\mathrm{C}\)