Integration by Parts
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86350 \(\int \sin ^{3} x d x+\int \cos ^{2} x \sin x d x=\)

1 \(-\cos x+C\)
2 \(-\sin x+C\)
3 \(x-\cos x+C\)
4 \(x-\sin x+C\)
5 \(\cos \mathrm{x}-\sin \mathrm{x}+\mathrm{C}\)
Integral Calculus

86351 \(\int \sec ^{2}(5 x-1) d x=\)

1 \(\frac{1}{5} \tan (5 x-1)+C\)
2 \(5 \tan (5 x-1)+C\)
3 \(\tan (5 x-1)+C\)
4 \(\cot (5 x-1)+C\)
5 \(\frac{1}{5} \cot (5 \mathrm{x}-1)+\mathrm{C}\)
Integral Calculus

86352 \(\int e^{-x} \operatorname{cosec} x(1+\cot x) d x\) is equal to

1 \(e^{-x} \operatorname{cosec} x+C\)
2 \(-\mathrm{e}^{-\mathrm{x}} \operatorname{cosec} \mathrm{x}+\mathrm{C}\)
3 \(-e^{-x}(\operatorname{cosec} x+\cot x)+C\)
4 \(-\mathrm{e}^{-\mathrm{x}}(\operatorname{cosec} \mathrm{x}-\tan \mathrm{x})+C\)
5 \(-\mathrm{e}^{-\mathrm{x}} \sec \mathrm{x}+C\)
Integral Calculus

86353 If \(\int \frac{f(x)}{\log \cos x} d x=-\log (\log \cos x)+C, \quad\) then \(f(x)\) is equal to

1 \(\tan x\)
2 \(-\sin x\)
3 \(-\cos x\)
4 \(-\tan x\)
5 \(\sin x\)
Integral Calculus

86350 \(\int \sin ^{3} x d x+\int \cos ^{2} x \sin x d x=\)

1 \(-\cos x+C\)
2 \(-\sin x+C\)
3 \(x-\cos x+C\)
4 \(x-\sin x+C\)
5 \(\cos \mathrm{x}-\sin \mathrm{x}+\mathrm{C}\)
Integral Calculus

86351 \(\int \sec ^{2}(5 x-1) d x=\)

1 \(\frac{1}{5} \tan (5 x-1)+C\)
2 \(5 \tan (5 x-1)+C\)
3 \(\tan (5 x-1)+C\)
4 \(\cot (5 x-1)+C\)
5 \(\frac{1}{5} \cot (5 \mathrm{x}-1)+\mathrm{C}\)
Integral Calculus

86352 \(\int e^{-x} \operatorname{cosec} x(1+\cot x) d x\) is equal to

1 \(e^{-x} \operatorname{cosec} x+C\)
2 \(-\mathrm{e}^{-\mathrm{x}} \operatorname{cosec} \mathrm{x}+\mathrm{C}\)
3 \(-e^{-x}(\operatorname{cosec} x+\cot x)+C\)
4 \(-\mathrm{e}^{-\mathrm{x}}(\operatorname{cosec} \mathrm{x}-\tan \mathrm{x})+C\)
5 \(-\mathrm{e}^{-\mathrm{x}} \sec \mathrm{x}+C\)
Integral Calculus

86353 If \(\int \frac{f(x)}{\log \cos x} d x=-\log (\log \cos x)+C, \quad\) then \(f(x)\) is equal to

1 \(\tan x\)
2 \(-\sin x\)
3 \(-\cos x\)
4 \(-\tan x\)
5 \(\sin x\)
Integral Calculus

86350 \(\int \sin ^{3} x d x+\int \cos ^{2} x \sin x d x=\)

1 \(-\cos x+C\)
2 \(-\sin x+C\)
3 \(x-\cos x+C\)
4 \(x-\sin x+C\)
5 \(\cos \mathrm{x}-\sin \mathrm{x}+\mathrm{C}\)
Integral Calculus

86351 \(\int \sec ^{2}(5 x-1) d x=\)

1 \(\frac{1}{5} \tan (5 x-1)+C\)
2 \(5 \tan (5 x-1)+C\)
3 \(\tan (5 x-1)+C\)
4 \(\cot (5 x-1)+C\)
5 \(\frac{1}{5} \cot (5 \mathrm{x}-1)+\mathrm{C}\)
Integral Calculus

86352 \(\int e^{-x} \operatorname{cosec} x(1+\cot x) d x\) is equal to

1 \(e^{-x} \operatorname{cosec} x+C\)
2 \(-\mathrm{e}^{-\mathrm{x}} \operatorname{cosec} \mathrm{x}+\mathrm{C}\)
3 \(-e^{-x}(\operatorname{cosec} x+\cot x)+C\)
4 \(-\mathrm{e}^{-\mathrm{x}}(\operatorname{cosec} \mathrm{x}-\tan \mathrm{x})+C\)
5 \(-\mathrm{e}^{-\mathrm{x}} \sec \mathrm{x}+C\)
Integral Calculus

86353 If \(\int \frac{f(x)}{\log \cos x} d x=-\log (\log \cos x)+C, \quad\) then \(f(x)\) is equal to

1 \(\tan x\)
2 \(-\sin x\)
3 \(-\cos x\)
4 \(-\tan x\)
5 \(\sin x\)
Integral Calculus

86350 \(\int \sin ^{3} x d x+\int \cos ^{2} x \sin x d x=\)

1 \(-\cos x+C\)
2 \(-\sin x+C\)
3 \(x-\cos x+C\)
4 \(x-\sin x+C\)
5 \(\cos \mathrm{x}-\sin \mathrm{x}+\mathrm{C}\)
Integral Calculus

86351 \(\int \sec ^{2}(5 x-1) d x=\)

1 \(\frac{1}{5} \tan (5 x-1)+C\)
2 \(5 \tan (5 x-1)+C\)
3 \(\tan (5 x-1)+C\)
4 \(\cot (5 x-1)+C\)
5 \(\frac{1}{5} \cot (5 \mathrm{x}-1)+\mathrm{C}\)
Integral Calculus

86352 \(\int e^{-x} \operatorname{cosec} x(1+\cot x) d x\) is equal to

1 \(e^{-x} \operatorname{cosec} x+C\)
2 \(-\mathrm{e}^{-\mathrm{x}} \operatorname{cosec} \mathrm{x}+\mathrm{C}\)
3 \(-e^{-x}(\operatorname{cosec} x+\cot x)+C\)
4 \(-\mathrm{e}^{-\mathrm{x}}(\operatorname{cosec} \mathrm{x}-\tan \mathrm{x})+C\)
5 \(-\mathrm{e}^{-\mathrm{x}} \sec \mathrm{x}+C\)
Integral Calculus

86353 If \(\int \frac{f(x)}{\log \cos x} d x=-\log (\log \cos x)+C, \quad\) then \(f(x)\) is equal to

1 \(\tan x\)
2 \(-\sin x\)
3 \(-\cos x\)
4 \(-\tan x\)
5 \(\sin x\)