Integration by Parts
Integral Calculus

86332 \(\int \cos ^{-3 / 7} x \sin ^{-11 / 7} x d x\) is equal to

1 \(\log \left|\sin ^{4 / 7} x\right|+C\)
2 \(\frac{4}{7} \tan ^{4 / 7} \mathrm{x}+\mathrm{C}\)
3 \(\frac{-7}{4} \tan ^{-4 / 7} \mathrm{x}+\mathrm{C}\)
4 \(\log \left|\cos ^{3 / 7}\right| \mathrm{x}+\mathrm{C}\)
Integral Calculus

86333 If \(\int \sin \left\{2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right\} d x\)
\(=A \sin ^{-1} x+B x \sqrt{1-\mathbf{x}^{2}}+C\),
then \(A+B\) is equal to

1 10
2 \(\frac{1}{2}\)
3 1
4 \(-\frac{1}{2}\)
Integral Calculus

86340 \(\int \mathrm{e}^{a x}\left(\frac{1-\beta \sin x}{1-\cos x}\right) d x=-e^{x} \cot \frac{x}{2}+c\), then \(\frac{\alpha^{2}+\beta^{2}}{2 \alpha \beta}=\)

1 -1
2 1
3 2
4 -2
Integral Calculus

86341 \(I_{m, n}=\int x^{m}(\log x)^{n} d x=\)

1 \(\frac{x^{m+1}}{m+1}(\log x)^{n}-\frac{n}{m+1} I_{m, n-1}\)
2 \(\frac{x^{m}}{m}(\log x)^{n}-\frac{n-1}{m+1} I_{m+1, n-1}\)
3 \(\frac{x^{m+1}}{m} \frac{(\log x)^{n+1}}{n+1}-\frac{n}{m+1} I_{m, n-1}\)
4 \(x^{m} \frac{(\log x)^{n+1}}{n+1}-\frac{n}{m+1} I_{m, n-1}\)
Integral Calculus

86332 \(\int \cos ^{-3 / 7} x \sin ^{-11 / 7} x d x\) is equal to

1 \(\log \left|\sin ^{4 / 7} x\right|+C\)
2 \(\frac{4}{7} \tan ^{4 / 7} \mathrm{x}+\mathrm{C}\)
3 \(\frac{-7}{4} \tan ^{-4 / 7} \mathrm{x}+\mathrm{C}\)
4 \(\log \left|\cos ^{3 / 7}\right| \mathrm{x}+\mathrm{C}\)
Integral Calculus

86333 If \(\int \sin \left\{2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right\} d x\)
\(=A \sin ^{-1} x+B x \sqrt{1-\mathbf{x}^{2}}+C\),
then \(A+B\) is equal to

1 10
2 \(\frac{1}{2}\)
3 1
4 \(-\frac{1}{2}\)
Integral Calculus

86340 \(\int \mathrm{e}^{a x}\left(\frac{1-\beta \sin x}{1-\cos x}\right) d x=-e^{x} \cot \frac{x}{2}+c\), then \(\frac{\alpha^{2}+\beta^{2}}{2 \alpha \beta}=\)

1 -1
2 1
3 2
4 -2
Integral Calculus

86341 \(I_{m, n}=\int x^{m}(\log x)^{n} d x=\)

1 \(\frac{x^{m+1}}{m+1}(\log x)^{n}-\frac{n}{m+1} I_{m, n-1}\)
2 \(\frac{x^{m}}{m}(\log x)^{n}-\frac{n-1}{m+1} I_{m+1, n-1}\)
3 \(\frac{x^{m+1}}{m} \frac{(\log x)^{n+1}}{n+1}-\frac{n}{m+1} I_{m, n-1}\)
4 \(x^{m} \frac{(\log x)^{n+1}}{n+1}-\frac{n}{m+1} I_{m, n-1}\)
Integral Calculus

86332 \(\int \cos ^{-3 / 7} x \sin ^{-11 / 7} x d x\) is equal to

1 \(\log \left|\sin ^{4 / 7} x\right|+C\)
2 \(\frac{4}{7} \tan ^{4 / 7} \mathrm{x}+\mathrm{C}\)
3 \(\frac{-7}{4} \tan ^{-4 / 7} \mathrm{x}+\mathrm{C}\)
4 \(\log \left|\cos ^{3 / 7}\right| \mathrm{x}+\mathrm{C}\)
Integral Calculus

86333 If \(\int \sin \left\{2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right\} d x\)
\(=A \sin ^{-1} x+B x \sqrt{1-\mathbf{x}^{2}}+C\),
then \(A+B\) is equal to

1 10
2 \(\frac{1}{2}\)
3 1
4 \(-\frac{1}{2}\)
Integral Calculus

86340 \(\int \mathrm{e}^{a x}\left(\frac{1-\beta \sin x}{1-\cos x}\right) d x=-e^{x} \cot \frac{x}{2}+c\), then \(\frac{\alpha^{2}+\beta^{2}}{2 \alpha \beta}=\)

1 -1
2 1
3 2
4 -2
Integral Calculus

86341 \(I_{m, n}=\int x^{m}(\log x)^{n} d x=\)

1 \(\frac{x^{m+1}}{m+1}(\log x)^{n}-\frac{n}{m+1} I_{m, n-1}\)
2 \(\frac{x^{m}}{m}(\log x)^{n}-\frac{n-1}{m+1} I_{m+1, n-1}\)
3 \(\frac{x^{m+1}}{m} \frac{(\log x)^{n+1}}{n+1}-\frac{n}{m+1} I_{m, n-1}\)
4 \(x^{m} \frac{(\log x)^{n+1}}{n+1}-\frac{n}{m+1} I_{m, n-1}\)
Integral Calculus

86332 \(\int \cos ^{-3 / 7} x \sin ^{-11 / 7} x d x\) is equal to

1 \(\log \left|\sin ^{4 / 7} x\right|+C\)
2 \(\frac{4}{7} \tan ^{4 / 7} \mathrm{x}+\mathrm{C}\)
3 \(\frac{-7}{4} \tan ^{-4 / 7} \mathrm{x}+\mathrm{C}\)
4 \(\log \left|\cos ^{3 / 7}\right| \mathrm{x}+\mathrm{C}\)
Integral Calculus

86333 If \(\int \sin \left\{2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right\} d x\)
\(=A \sin ^{-1} x+B x \sqrt{1-\mathbf{x}^{2}}+C\),
then \(A+B\) is equal to

1 10
2 \(\frac{1}{2}\)
3 1
4 \(-\frac{1}{2}\)
Integral Calculus

86340 \(\int \mathrm{e}^{a x}\left(\frac{1-\beta \sin x}{1-\cos x}\right) d x=-e^{x} \cot \frac{x}{2}+c\), then \(\frac{\alpha^{2}+\beta^{2}}{2 \alpha \beta}=\)

1 -1
2 1
3 2
4 -2
Integral Calculus

86341 \(I_{m, n}=\int x^{m}(\log x)^{n} d x=\)

1 \(\frac{x^{m+1}}{m+1}(\log x)^{n}-\frac{n}{m+1} I_{m, n-1}\)
2 \(\frac{x^{m}}{m}(\log x)^{n}-\frac{n-1}{m+1} I_{m+1, n-1}\)
3 \(\frac{x^{m+1}}{m} \frac{(\log x)^{n+1}}{n+1}-\frac{n}{m+1} I_{m, n-1}\)
4 \(x^{m} \frac{(\log x)^{n+1}}{n+1}-\frac{n}{m+1} I_{m, n-1}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here