Integration by Parts
Integral Calculus

86304 \(\int \frac{x \cdot \log x}{\left(\sqrt{x^{2}-1}\right)^{3}} d x=\)

1 \(\sec ^{-1} \mathrm{x}+\frac{\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}+\mathrm{c}\)
2 \(\sec ^{-1} \mathrm{x}-\frac{\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}+\mathrm{c}\)
3 \(\frac{\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}-\sec ^{-1} \mathrm{x}+\mathrm{c}\)
4 \(\frac{-\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}-\sec ^{-1} \mathrm{x}+\mathrm{c}\)
Integral Calculus

86305 If \(\frac{8}{(x+3)^{2}(x-2)}=\frac{A x+B}{(x+3)^{2}}+\frac{C}{x-2}\), then
\(25(B+8 C-A)=\)

1 25
2 1
3 8
4 -8
Integral Calculus

86306 If \(\frac{x+1}{(2 x-1)(3 x+1)}=\frac{A}{2 x-1}+\frac{B}{3 x+1}\), then
\(16 A+9 B\) is equal to

1 4
2 5
3 6
4 8
Integral Calculus

86307 \(\int \frac{\mathrm{e}^{\tan ^{-1} \mathrm{x}}}{1+\mathrm{x}^{2}}\left[\left(\sec ^{-1} \sqrt{1+\mathrm{x}^{2}}\right)^{2}+\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)\right] \mathrm{dx}=\)

1 \(\mathrm{e}^{\tan -1_{x}}\left(\tan ^{-1} \mathrm{x}\right)^{2}+\mathrm{C}\)
2 \(\mathrm{e}^{\tan -1_{x}}\left(\sec ^{-1} \mathrm{x}\right)^{2}+\mathrm{C}\)
3 \(\mathrm{e}^{\tan -1 \mathrm{x}}\left(\sec ^{-1}\left(\sqrt{1+\mathrm{x}^{2}}\right)\right)+\mathrm{C}\)
4 \(\mathrm{e}^{\tan -1_{x}}\left(\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)\right)+\mathrm{C}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86304 \(\int \frac{x \cdot \log x}{\left(\sqrt{x^{2}-1}\right)^{3}} d x=\)

1 \(\sec ^{-1} \mathrm{x}+\frac{\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}+\mathrm{c}\)
2 \(\sec ^{-1} \mathrm{x}-\frac{\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}+\mathrm{c}\)
3 \(\frac{\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}-\sec ^{-1} \mathrm{x}+\mathrm{c}\)
4 \(\frac{-\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}-\sec ^{-1} \mathrm{x}+\mathrm{c}\)
Integral Calculus

86305 If \(\frac{8}{(x+3)^{2}(x-2)}=\frac{A x+B}{(x+3)^{2}}+\frac{C}{x-2}\), then
\(25(B+8 C-A)=\)

1 25
2 1
3 8
4 -8
Integral Calculus

86306 If \(\frac{x+1}{(2 x-1)(3 x+1)}=\frac{A}{2 x-1}+\frac{B}{3 x+1}\), then
\(16 A+9 B\) is equal to

1 4
2 5
3 6
4 8
Integral Calculus

86307 \(\int \frac{\mathrm{e}^{\tan ^{-1} \mathrm{x}}}{1+\mathrm{x}^{2}}\left[\left(\sec ^{-1} \sqrt{1+\mathrm{x}^{2}}\right)^{2}+\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)\right] \mathrm{dx}=\)

1 \(\mathrm{e}^{\tan -1_{x}}\left(\tan ^{-1} \mathrm{x}\right)^{2}+\mathrm{C}\)
2 \(\mathrm{e}^{\tan -1_{x}}\left(\sec ^{-1} \mathrm{x}\right)^{2}+\mathrm{C}\)
3 \(\mathrm{e}^{\tan -1 \mathrm{x}}\left(\sec ^{-1}\left(\sqrt{1+\mathrm{x}^{2}}\right)\right)+\mathrm{C}\)
4 \(\mathrm{e}^{\tan -1_{x}}\left(\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)\right)+\mathrm{C}\)
Integral Calculus

86304 \(\int \frac{x \cdot \log x}{\left(\sqrt{x^{2}-1}\right)^{3}} d x=\)

1 \(\sec ^{-1} \mathrm{x}+\frac{\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}+\mathrm{c}\)
2 \(\sec ^{-1} \mathrm{x}-\frac{\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}+\mathrm{c}\)
3 \(\frac{\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}-\sec ^{-1} \mathrm{x}+\mathrm{c}\)
4 \(\frac{-\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}-\sec ^{-1} \mathrm{x}+\mathrm{c}\)
Integral Calculus

86305 If \(\frac{8}{(x+3)^{2}(x-2)}=\frac{A x+B}{(x+3)^{2}}+\frac{C}{x-2}\), then
\(25(B+8 C-A)=\)

1 25
2 1
3 8
4 -8
Integral Calculus

86306 If \(\frac{x+1}{(2 x-1)(3 x+1)}=\frac{A}{2 x-1}+\frac{B}{3 x+1}\), then
\(16 A+9 B\) is equal to

1 4
2 5
3 6
4 8
Integral Calculus

86307 \(\int \frac{\mathrm{e}^{\tan ^{-1} \mathrm{x}}}{1+\mathrm{x}^{2}}\left[\left(\sec ^{-1} \sqrt{1+\mathrm{x}^{2}}\right)^{2}+\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)\right] \mathrm{dx}=\)

1 \(\mathrm{e}^{\tan -1_{x}}\left(\tan ^{-1} \mathrm{x}\right)^{2}+\mathrm{C}\)
2 \(\mathrm{e}^{\tan -1_{x}}\left(\sec ^{-1} \mathrm{x}\right)^{2}+\mathrm{C}\)
3 \(\mathrm{e}^{\tan -1 \mathrm{x}}\left(\sec ^{-1}\left(\sqrt{1+\mathrm{x}^{2}}\right)\right)+\mathrm{C}\)
4 \(\mathrm{e}^{\tan -1_{x}}\left(\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)\right)+\mathrm{C}\)
Integral Calculus

86304 \(\int \frac{x \cdot \log x}{\left(\sqrt{x^{2}-1}\right)^{3}} d x=\)

1 \(\sec ^{-1} \mathrm{x}+\frac{\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}+\mathrm{c}\)
2 \(\sec ^{-1} \mathrm{x}-\frac{\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}+\mathrm{c}\)
3 \(\frac{\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}-\sec ^{-1} \mathrm{x}+\mathrm{c}\)
4 \(\frac{-\log \mathrm{x}}{\sqrt{\mathrm{x}^{2}-1}}-\sec ^{-1} \mathrm{x}+\mathrm{c}\)
Integral Calculus

86305 If \(\frac{8}{(x+3)^{2}(x-2)}=\frac{A x+B}{(x+3)^{2}}+\frac{C}{x-2}\), then
\(25(B+8 C-A)=\)

1 25
2 1
3 8
4 -8
Integral Calculus

86306 If \(\frac{x+1}{(2 x-1)(3 x+1)}=\frac{A}{2 x-1}+\frac{B}{3 x+1}\), then
\(16 A+9 B\) is equal to

1 4
2 5
3 6
4 8
Integral Calculus

86307 \(\int \frac{\mathrm{e}^{\tan ^{-1} \mathrm{x}}}{1+\mathrm{x}^{2}}\left[\left(\sec ^{-1} \sqrt{1+\mathrm{x}^{2}}\right)^{2}+\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)\right] \mathrm{dx}=\)

1 \(\mathrm{e}^{\tan -1_{x}}\left(\tan ^{-1} \mathrm{x}\right)^{2}+\mathrm{C}\)
2 \(\mathrm{e}^{\tan -1_{x}}\left(\sec ^{-1} \mathrm{x}\right)^{2}+\mathrm{C}\)
3 \(\mathrm{e}^{\tan -1 \mathrm{x}}\left(\sec ^{-1}\left(\sqrt{1+\mathrm{x}^{2}}\right)\right)+\mathrm{C}\)
4 \(\mathrm{e}^{\tan -1_{x}}\left(\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)\right)+\mathrm{C}\)