Integration by Parts
Integral Calculus

86297 \(\int e^{x}\left(\frac{2+\sin 2 x}{1+\cos 2 x}\right) d x\) is equal to

1 \(\mathrm{e}^{\mathrm{x}} \cot \mathrm{x}+\mathrm{C}\)
2 \(2 \mathrm{e}^{\mathrm{x}} \sec ^{2} \mathrm{x}+\mathrm{C}\)
3 \(\mathrm{e}^{\mathrm{x}} \cos 2 \mathrm{x}+\mathrm{C}\)
4 \(e^{x} \tan x+C\)
Integral Calculus

86298 \(\int \frac{f(\mathrm{x}) g^{\prime}(\mathrm{x})-f^{\prime}(\mathrm{x}) g(\mathrm{x})}{f(\mathrm{x}) g(\mathrm{x})}[\log (\mathrm{g}(\mathrm{x}))-\log (f(\mathrm{x}))] \mathrm{dx}\) is equal to

1 \(\log \left[\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]+\mathrm{C}\)
2 \(\frac{1}{2}\left[\log \frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]^{2}+\mathrm{C}\)
3 \(\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})} \log \left[\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]+\mathrm{C}\)
4 \(\log \left[\frac{g(x)}{f(x)}\right]-\frac{g(x)}{f(x)}+C\)
Integral Calculus

86299 \(\int e^{x} \frac{x^{2}+1}{(x+1)^{2}} d x=\)

1 \(\frac{e^{x}}{x+1}+C\)
2 \(\frac{-e^{x}}{x+1}+C\)
3 \(e^{x}\left(\frac{x-1}{x+1}\right)+C\)
4 \(\mathrm{e}^{\mathrm{x}}\left(\frac{\mathrm{x}+1}{\mathrm{x}-1}\right)+\mathrm{C}\)
Integral Calculus

86300 \(\int \frac{e^{x}(x+3)}{(x+5)^{3}} d x=\)

1 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+5)^{2}}+\mathrm{c}\)
2 \(e^{x}(x+5)^{2}+c\)
3 \(e^{x}(x+3)^{2}+c\)
4 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+3)^{2}}+\mathrm{c}\)
Integral Calculus

86301 If \(\int \frac{(x-1)^{2}}{\left(x^{2}+1\right)^{2}} d x=\tan ^{-1}(x)+g(x)+k\), then \(g(x)\) is equal to

1 \(\operatorname{Tan}^{-1}\left(\frac{\mathrm{x}}{2}\right)\)
2 \(\frac{1}{x^{2}+1}\)
3 \(\frac{1}{2\left(\mathrm{x}^{2}+1\right)}\)
4 \(\frac{2}{\mathrm{x}^{2}+1}\)
Integral Calculus

86297 \(\int e^{x}\left(\frac{2+\sin 2 x}{1+\cos 2 x}\right) d x\) is equal to

1 \(\mathrm{e}^{\mathrm{x}} \cot \mathrm{x}+\mathrm{C}\)
2 \(2 \mathrm{e}^{\mathrm{x}} \sec ^{2} \mathrm{x}+\mathrm{C}\)
3 \(\mathrm{e}^{\mathrm{x}} \cos 2 \mathrm{x}+\mathrm{C}\)
4 \(e^{x} \tan x+C\)
Integral Calculus

86298 \(\int \frac{f(\mathrm{x}) g^{\prime}(\mathrm{x})-f^{\prime}(\mathrm{x}) g(\mathrm{x})}{f(\mathrm{x}) g(\mathrm{x})}[\log (\mathrm{g}(\mathrm{x}))-\log (f(\mathrm{x}))] \mathrm{dx}\) is equal to

1 \(\log \left[\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]+\mathrm{C}\)
2 \(\frac{1}{2}\left[\log \frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]^{2}+\mathrm{C}\)
3 \(\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})} \log \left[\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]+\mathrm{C}\)
4 \(\log \left[\frac{g(x)}{f(x)}\right]-\frac{g(x)}{f(x)}+C\)
Integral Calculus

86299 \(\int e^{x} \frac{x^{2}+1}{(x+1)^{2}} d x=\)

1 \(\frac{e^{x}}{x+1}+C\)
2 \(\frac{-e^{x}}{x+1}+C\)
3 \(e^{x}\left(\frac{x-1}{x+1}\right)+C\)
4 \(\mathrm{e}^{\mathrm{x}}\left(\frac{\mathrm{x}+1}{\mathrm{x}-1}\right)+\mathrm{C}\)
Integral Calculus

86300 \(\int \frac{e^{x}(x+3)}{(x+5)^{3}} d x=\)

1 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+5)^{2}}+\mathrm{c}\)
2 \(e^{x}(x+5)^{2}+c\)
3 \(e^{x}(x+3)^{2}+c\)
4 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+3)^{2}}+\mathrm{c}\)
Integral Calculus

86301 If \(\int \frac{(x-1)^{2}}{\left(x^{2}+1\right)^{2}} d x=\tan ^{-1}(x)+g(x)+k\), then \(g(x)\) is equal to

1 \(\operatorname{Tan}^{-1}\left(\frac{\mathrm{x}}{2}\right)\)
2 \(\frac{1}{x^{2}+1}\)
3 \(\frac{1}{2\left(\mathrm{x}^{2}+1\right)}\)
4 \(\frac{2}{\mathrm{x}^{2}+1}\)
Integral Calculus

86297 \(\int e^{x}\left(\frac{2+\sin 2 x}{1+\cos 2 x}\right) d x\) is equal to

1 \(\mathrm{e}^{\mathrm{x}} \cot \mathrm{x}+\mathrm{C}\)
2 \(2 \mathrm{e}^{\mathrm{x}} \sec ^{2} \mathrm{x}+\mathrm{C}\)
3 \(\mathrm{e}^{\mathrm{x}} \cos 2 \mathrm{x}+\mathrm{C}\)
4 \(e^{x} \tan x+C\)
Integral Calculus

86298 \(\int \frac{f(\mathrm{x}) g^{\prime}(\mathrm{x})-f^{\prime}(\mathrm{x}) g(\mathrm{x})}{f(\mathrm{x}) g(\mathrm{x})}[\log (\mathrm{g}(\mathrm{x}))-\log (f(\mathrm{x}))] \mathrm{dx}\) is equal to

1 \(\log \left[\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]+\mathrm{C}\)
2 \(\frac{1}{2}\left[\log \frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]^{2}+\mathrm{C}\)
3 \(\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})} \log \left[\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]+\mathrm{C}\)
4 \(\log \left[\frac{g(x)}{f(x)}\right]-\frac{g(x)}{f(x)}+C\)
Integral Calculus

86299 \(\int e^{x} \frac{x^{2}+1}{(x+1)^{2}} d x=\)

1 \(\frac{e^{x}}{x+1}+C\)
2 \(\frac{-e^{x}}{x+1}+C\)
3 \(e^{x}\left(\frac{x-1}{x+1}\right)+C\)
4 \(\mathrm{e}^{\mathrm{x}}\left(\frac{\mathrm{x}+1}{\mathrm{x}-1}\right)+\mathrm{C}\)
Integral Calculus

86300 \(\int \frac{e^{x}(x+3)}{(x+5)^{3}} d x=\)

1 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+5)^{2}}+\mathrm{c}\)
2 \(e^{x}(x+5)^{2}+c\)
3 \(e^{x}(x+3)^{2}+c\)
4 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+3)^{2}}+\mathrm{c}\)
Integral Calculus

86301 If \(\int \frac{(x-1)^{2}}{\left(x^{2}+1\right)^{2}} d x=\tan ^{-1}(x)+g(x)+k\), then \(g(x)\) is equal to

1 \(\operatorname{Tan}^{-1}\left(\frac{\mathrm{x}}{2}\right)\)
2 \(\frac{1}{x^{2}+1}\)
3 \(\frac{1}{2\left(\mathrm{x}^{2}+1\right)}\)
4 \(\frac{2}{\mathrm{x}^{2}+1}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86297 \(\int e^{x}\left(\frac{2+\sin 2 x}{1+\cos 2 x}\right) d x\) is equal to

1 \(\mathrm{e}^{\mathrm{x}} \cot \mathrm{x}+\mathrm{C}\)
2 \(2 \mathrm{e}^{\mathrm{x}} \sec ^{2} \mathrm{x}+\mathrm{C}\)
3 \(\mathrm{e}^{\mathrm{x}} \cos 2 \mathrm{x}+\mathrm{C}\)
4 \(e^{x} \tan x+C\)
Integral Calculus

86298 \(\int \frac{f(\mathrm{x}) g^{\prime}(\mathrm{x})-f^{\prime}(\mathrm{x}) g(\mathrm{x})}{f(\mathrm{x}) g(\mathrm{x})}[\log (\mathrm{g}(\mathrm{x}))-\log (f(\mathrm{x}))] \mathrm{dx}\) is equal to

1 \(\log \left[\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]+\mathrm{C}\)
2 \(\frac{1}{2}\left[\log \frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]^{2}+\mathrm{C}\)
3 \(\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})} \log \left[\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]+\mathrm{C}\)
4 \(\log \left[\frac{g(x)}{f(x)}\right]-\frac{g(x)}{f(x)}+C\)
Integral Calculus

86299 \(\int e^{x} \frac{x^{2}+1}{(x+1)^{2}} d x=\)

1 \(\frac{e^{x}}{x+1}+C\)
2 \(\frac{-e^{x}}{x+1}+C\)
3 \(e^{x}\left(\frac{x-1}{x+1}\right)+C\)
4 \(\mathrm{e}^{\mathrm{x}}\left(\frac{\mathrm{x}+1}{\mathrm{x}-1}\right)+\mathrm{C}\)
Integral Calculus

86300 \(\int \frac{e^{x}(x+3)}{(x+5)^{3}} d x=\)

1 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+5)^{2}}+\mathrm{c}\)
2 \(e^{x}(x+5)^{2}+c\)
3 \(e^{x}(x+3)^{2}+c\)
4 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+3)^{2}}+\mathrm{c}\)
Integral Calculus

86301 If \(\int \frac{(x-1)^{2}}{\left(x^{2}+1\right)^{2}} d x=\tan ^{-1}(x)+g(x)+k\), then \(g(x)\) is equal to

1 \(\operatorname{Tan}^{-1}\left(\frac{\mathrm{x}}{2}\right)\)
2 \(\frac{1}{x^{2}+1}\)
3 \(\frac{1}{2\left(\mathrm{x}^{2}+1\right)}\)
4 \(\frac{2}{\mathrm{x}^{2}+1}\)
Integral Calculus

86297 \(\int e^{x}\left(\frac{2+\sin 2 x}{1+\cos 2 x}\right) d x\) is equal to

1 \(\mathrm{e}^{\mathrm{x}} \cot \mathrm{x}+\mathrm{C}\)
2 \(2 \mathrm{e}^{\mathrm{x}} \sec ^{2} \mathrm{x}+\mathrm{C}\)
3 \(\mathrm{e}^{\mathrm{x}} \cos 2 \mathrm{x}+\mathrm{C}\)
4 \(e^{x} \tan x+C\)
Integral Calculus

86298 \(\int \frac{f(\mathrm{x}) g^{\prime}(\mathrm{x})-f^{\prime}(\mathrm{x}) g(\mathrm{x})}{f(\mathrm{x}) g(\mathrm{x})}[\log (\mathrm{g}(\mathrm{x}))-\log (f(\mathrm{x}))] \mathrm{dx}\) is equal to

1 \(\log \left[\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]+\mathrm{C}\)
2 \(\frac{1}{2}\left[\log \frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]^{2}+\mathrm{C}\)
3 \(\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})} \log \left[\frac{\mathrm{g}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}\right]+\mathrm{C}\)
4 \(\log \left[\frac{g(x)}{f(x)}\right]-\frac{g(x)}{f(x)}+C\)
Integral Calculus

86299 \(\int e^{x} \frac{x^{2}+1}{(x+1)^{2}} d x=\)

1 \(\frac{e^{x}}{x+1}+C\)
2 \(\frac{-e^{x}}{x+1}+C\)
3 \(e^{x}\left(\frac{x-1}{x+1}\right)+C\)
4 \(\mathrm{e}^{\mathrm{x}}\left(\frac{\mathrm{x}+1}{\mathrm{x}-1}\right)+\mathrm{C}\)
Integral Calculus

86300 \(\int \frac{e^{x}(x+3)}{(x+5)^{3}} d x=\)

1 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+5)^{2}}+\mathrm{c}\)
2 \(e^{x}(x+5)^{2}+c\)
3 \(e^{x}(x+3)^{2}+c\)
4 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+3)^{2}}+\mathrm{c}\)
Integral Calculus

86301 If \(\int \frac{(x-1)^{2}}{\left(x^{2}+1\right)^{2}} d x=\tan ^{-1}(x)+g(x)+k\), then \(g(x)\) is equal to

1 \(\operatorname{Tan}^{-1}\left(\frac{\mathrm{x}}{2}\right)\)
2 \(\frac{1}{x^{2}+1}\)
3 \(\frac{1}{2\left(\mathrm{x}^{2}+1\right)}\)
4 \(\frac{2}{\mathrm{x}^{2}+1}\)