Integration by Parts
Integral Calculus

86291 \(\int \frac{d x}{x+\sqrt{x-1}}=\)

1 \(\log _{\mathrm{e}}|\mathrm{x}+\sqrt{\mathrm{x}-1}|-\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \sqrt{\mathrm{x}-1}+1}{\sqrt{3}}\right)+\mathrm{c}\)
2 \(\frac{1}{\sqrt{3}} \log _{e}|x+\sqrt{x-1}|-\tan ^{-1}\left(\frac{2 \sqrt{x-1}+1}{\sqrt{3}}\right)+c\)
3 \(\frac{2}{\sqrt{3}} \log _{\mathrm{e}}|\mathrm{x}+\sqrt{\mathrm{x}-1}|-\tan ^{-1}\left(\frac{2 \sqrt{\mathrm{x}-1}+1}{\sqrt{3}}\right)+\mathrm{c}\)
4 \(\log _{\mathrm{e}}|\mathrm{x}+\sqrt{\mathrm{x}-1}|-\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \sqrt{\mathrm{x}-1}+1}{\sqrt{3}}\right)+\mathrm{c}\)
Integral Calculus

86292 \(\int \mathrm{e}^{\mathrm{x} / 2}\left(\frac{2+\sin x}{1+\cos x}\right) d x=\)

1 \(2 \mathrm{e}^{\mathrm{x} / 2} \operatorname{cosec}\left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
2 \(2 \mathrm{e}^{\mathrm{x} / 2} \tan \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
3 \(2 \mathrm{e}^{\mathrm{x} / 2} \cos \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
4 \(2 \mathrm{e}^{\mathrm{x} / 2} \sin \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
Integral Calculus

86295 \(\int(\log x)^{3} x^{5} d x=\)

1 \(x^{6}\left[\frac{(\log x)^{3}}{12}-\frac{1}{6}(\log x)^{2}+\frac{1}{6} \log x-\frac{1}{36}\right]+c\)
2 \(x^{6}\left[\frac{(\log x)^{3}}{6}-\frac{1}{18}(\log x)^{2}+\frac{\log x}{12}-\frac{1}{36}\right]+c\)
3 \(x^{6}\left[\frac{(\log x)^{3}}{6}+\frac{1}{12}(\log x)^{2}-\frac{\log x}{12}+\frac{1}{36}\right]+c\)
4 \(x^{6}\left[\frac{(\log x)^{3}}{6}-\frac{(\log x)^{2}}{12}+\frac{\log x}{36}-\frac{1}{216}\right]+c\)
Integral Calculus

86296 If \(\int \frac{d x}{x(\log x-2)(\log x-3)}=I+C\), then \(I\) is equal to

1 \(\frac{1}{x} \log \left|\frac{\log x-3}{\log x-2}\right|\)
2 \(\log \left|\frac{\log x-3}{\log x-2}\right|\)
3 \(\log \left|\frac{\log x-2}{\log x-3}\right|\)
4 \(\log |(\log x-3)(\log x-2)|\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86291 \(\int \frac{d x}{x+\sqrt{x-1}}=\)

1 \(\log _{\mathrm{e}}|\mathrm{x}+\sqrt{\mathrm{x}-1}|-\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \sqrt{\mathrm{x}-1}+1}{\sqrt{3}}\right)+\mathrm{c}\)
2 \(\frac{1}{\sqrt{3}} \log _{e}|x+\sqrt{x-1}|-\tan ^{-1}\left(\frac{2 \sqrt{x-1}+1}{\sqrt{3}}\right)+c\)
3 \(\frac{2}{\sqrt{3}} \log _{\mathrm{e}}|\mathrm{x}+\sqrt{\mathrm{x}-1}|-\tan ^{-1}\left(\frac{2 \sqrt{\mathrm{x}-1}+1}{\sqrt{3}}\right)+\mathrm{c}\)
4 \(\log _{\mathrm{e}}|\mathrm{x}+\sqrt{\mathrm{x}-1}|-\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \sqrt{\mathrm{x}-1}+1}{\sqrt{3}}\right)+\mathrm{c}\)
Integral Calculus

86292 \(\int \mathrm{e}^{\mathrm{x} / 2}\left(\frac{2+\sin x}{1+\cos x}\right) d x=\)

1 \(2 \mathrm{e}^{\mathrm{x} / 2} \operatorname{cosec}\left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
2 \(2 \mathrm{e}^{\mathrm{x} / 2} \tan \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
3 \(2 \mathrm{e}^{\mathrm{x} / 2} \cos \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
4 \(2 \mathrm{e}^{\mathrm{x} / 2} \sin \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
Integral Calculus

86295 \(\int(\log x)^{3} x^{5} d x=\)

1 \(x^{6}\left[\frac{(\log x)^{3}}{12}-\frac{1}{6}(\log x)^{2}+\frac{1}{6} \log x-\frac{1}{36}\right]+c\)
2 \(x^{6}\left[\frac{(\log x)^{3}}{6}-\frac{1}{18}(\log x)^{2}+\frac{\log x}{12}-\frac{1}{36}\right]+c\)
3 \(x^{6}\left[\frac{(\log x)^{3}}{6}+\frac{1}{12}(\log x)^{2}-\frac{\log x}{12}+\frac{1}{36}\right]+c\)
4 \(x^{6}\left[\frac{(\log x)^{3}}{6}-\frac{(\log x)^{2}}{12}+\frac{\log x}{36}-\frac{1}{216}\right]+c\)
Integral Calculus

86296 If \(\int \frac{d x}{x(\log x-2)(\log x-3)}=I+C\), then \(I\) is equal to

1 \(\frac{1}{x} \log \left|\frac{\log x-3}{\log x-2}\right|\)
2 \(\log \left|\frac{\log x-3}{\log x-2}\right|\)
3 \(\log \left|\frac{\log x-2}{\log x-3}\right|\)
4 \(\log |(\log x-3)(\log x-2)|\)
Integral Calculus

86291 \(\int \frac{d x}{x+\sqrt{x-1}}=\)

1 \(\log _{\mathrm{e}}|\mathrm{x}+\sqrt{\mathrm{x}-1}|-\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \sqrt{\mathrm{x}-1}+1}{\sqrt{3}}\right)+\mathrm{c}\)
2 \(\frac{1}{\sqrt{3}} \log _{e}|x+\sqrt{x-1}|-\tan ^{-1}\left(\frac{2 \sqrt{x-1}+1}{\sqrt{3}}\right)+c\)
3 \(\frac{2}{\sqrt{3}} \log _{\mathrm{e}}|\mathrm{x}+\sqrt{\mathrm{x}-1}|-\tan ^{-1}\left(\frac{2 \sqrt{\mathrm{x}-1}+1}{\sqrt{3}}\right)+\mathrm{c}\)
4 \(\log _{\mathrm{e}}|\mathrm{x}+\sqrt{\mathrm{x}-1}|-\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \sqrt{\mathrm{x}-1}+1}{\sqrt{3}}\right)+\mathrm{c}\)
Integral Calculus

86292 \(\int \mathrm{e}^{\mathrm{x} / 2}\left(\frac{2+\sin x}{1+\cos x}\right) d x=\)

1 \(2 \mathrm{e}^{\mathrm{x} / 2} \operatorname{cosec}\left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
2 \(2 \mathrm{e}^{\mathrm{x} / 2} \tan \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
3 \(2 \mathrm{e}^{\mathrm{x} / 2} \cos \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
4 \(2 \mathrm{e}^{\mathrm{x} / 2} \sin \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
Integral Calculus

86295 \(\int(\log x)^{3} x^{5} d x=\)

1 \(x^{6}\left[\frac{(\log x)^{3}}{12}-\frac{1}{6}(\log x)^{2}+\frac{1}{6} \log x-\frac{1}{36}\right]+c\)
2 \(x^{6}\left[\frac{(\log x)^{3}}{6}-\frac{1}{18}(\log x)^{2}+\frac{\log x}{12}-\frac{1}{36}\right]+c\)
3 \(x^{6}\left[\frac{(\log x)^{3}}{6}+\frac{1}{12}(\log x)^{2}-\frac{\log x}{12}+\frac{1}{36}\right]+c\)
4 \(x^{6}\left[\frac{(\log x)^{3}}{6}-\frac{(\log x)^{2}}{12}+\frac{\log x}{36}-\frac{1}{216}\right]+c\)
Integral Calculus

86296 If \(\int \frac{d x}{x(\log x-2)(\log x-3)}=I+C\), then \(I\) is equal to

1 \(\frac{1}{x} \log \left|\frac{\log x-3}{\log x-2}\right|\)
2 \(\log \left|\frac{\log x-3}{\log x-2}\right|\)
3 \(\log \left|\frac{\log x-2}{\log x-3}\right|\)
4 \(\log |(\log x-3)(\log x-2)|\)
Integral Calculus

86291 \(\int \frac{d x}{x+\sqrt{x-1}}=\)

1 \(\log _{\mathrm{e}}|\mathrm{x}+\sqrt{\mathrm{x}-1}|-\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \sqrt{\mathrm{x}-1}+1}{\sqrt{3}}\right)+\mathrm{c}\)
2 \(\frac{1}{\sqrt{3}} \log _{e}|x+\sqrt{x-1}|-\tan ^{-1}\left(\frac{2 \sqrt{x-1}+1}{\sqrt{3}}\right)+c\)
3 \(\frac{2}{\sqrt{3}} \log _{\mathrm{e}}|\mathrm{x}+\sqrt{\mathrm{x}-1}|-\tan ^{-1}\left(\frac{2 \sqrt{\mathrm{x}-1}+1}{\sqrt{3}}\right)+\mathrm{c}\)
4 \(\log _{\mathrm{e}}|\mathrm{x}+\sqrt{\mathrm{x}-1}|-\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \sqrt{\mathrm{x}-1}+1}{\sqrt{3}}\right)+\mathrm{c}\)
Integral Calculus

86292 \(\int \mathrm{e}^{\mathrm{x} / 2}\left(\frac{2+\sin x}{1+\cos x}\right) d x=\)

1 \(2 \mathrm{e}^{\mathrm{x} / 2} \operatorname{cosec}\left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
2 \(2 \mathrm{e}^{\mathrm{x} / 2} \tan \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
3 \(2 \mathrm{e}^{\mathrm{x} / 2} \cos \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
4 \(2 \mathrm{e}^{\mathrm{x} / 2} \sin \left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\)
Integral Calculus

86295 \(\int(\log x)^{3} x^{5} d x=\)

1 \(x^{6}\left[\frac{(\log x)^{3}}{12}-\frac{1}{6}(\log x)^{2}+\frac{1}{6} \log x-\frac{1}{36}\right]+c\)
2 \(x^{6}\left[\frac{(\log x)^{3}}{6}-\frac{1}{18}(\log x)^{2}+\frac{\log x}{12}-\frac{1}{36}\right]+c\)
3 \(x^{6}\left[\frac{(\log x)^{3}}{6}+\frac{1}{12}(\log x)^{2}-\frac{\log x}{12}+\frac{1}{36}\right]+c\)
4 \(x^{6}\left[\frac{(\log x)^{3}}{6}-\frac{(\log x)^{2}}{12}+\frac{\log x}{36}-\frac{1}{216}\right]+c\)
Integral Calculus

86296 If \(\int \frac{d x}{x(\log x-2)(\log x-3)}=I+C\), then \(I\) is equal to

1 \(\frac{1}{x} \log \left|\frac{\log x-3}{\log x-2}\right|\)
2 \(\log \left|\frac{\log x-3}{\log x-2}\right|\)
3 \(\log \left|\frac{\log x-2}{\log x-3}\right|\)
4 \(\log |(\log x-3)(\log x-2)|\)