Integration by Parts
Integral Calculus

86339 If
\(\int \frac{x+5}{x^{2}+4 x+5} d x=a \log \left(x^{2}+4 x+5\right)\)
\(+\operatorname{btan}^{-1}(x+k)+C\), then \((a, b, k)\) equals

1 \(\left(\frac{1}{2}, 3,2\right)\)
2 \(\left(\frac{1}{2}, 1,2\right)\)
3 \(\left(\frac{1}{2}, 3,1\right)\)
4 \((1,3,2)\)
Integral Calculus

86284 \(\int \frac{d x}{\sin x+\sin 2 x}=\)

1 \(\frac{1}{2} \log _{\mathrm{e}}|1+\cos x|+\frac{1}{6} \log _{\mathrm{e}}|1-\cos x|-\frac{2}{3} \log _{\mathrm{e}}|1+2 \cos x|+c\)
2 \(\frac{1}{3} \log _{\mathrm{e}}|1+\cos \mathrm{x}|-\frac{2}{3} \log _{\mathrm{e}}|1-\cos \mathrm{x}|+\frac{1}{2} \log _{\mathrm{e}}|1+2 \cos \mathrm{x}|+\mathrm{c}\)
3 \(\frac{1}{2} \log _{\mathrm{e}}|1+\sin \mathrm{x}|-\frac{1}{3} \log _{\mathrm{e}}|1-\sin \mathrm{x}|-\frac{1}{3} \log _{\mathrm{e}}|1+\cos \mathrm{x}|+\mathrm{c}\)
4 \(\frac{1}{3} \log _{\mathrm{e}}|1-\sin \mathrm{x}|+\frac{1}{2} \log _{\mathrm{e}}|1+\cos \mathrm{x}|-\frac{2}{3} \log _{\mathrm{e}}|1-2 \cos \mathrm{x}|+\mathrm{c}\)
Integral Calculus

86269 If \(\int e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x=\)

1 \(e^{x} \tan \frac{x}{2}+C\)
2 \(e^{x} \cot \frac{x}{2}+C\)
3 \(\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}+\mathrm{C}\)
4 \(e^{x} \cos \mathrm{x}+C\)
Integral Calculus

86271 \(\int \tan ^{-1} x d x=\)

1 \(x \tan ^{-1} \mathrm{x}+\frac{1}{2} \log \left(1+\mathrm{x}^{2}\right)\)
2 \(x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)\)
3 \((x-1) \tan ^{-1}\)
4 \(x \tan ^{-1} x-\log x\)
Integral Calculus

86339 If
\(\int \frac{x+5}{x^{2}+4 x+5} d x=a \log \left(x^{2}+4 x+5\right)\)
\(+\operatorname{btan}^{-1}(x+k)+C\), then \((a, b, k)\) equals

1 \(\left(\frac{1}{2}, 3,2\right)\)
2 \(\left(\frac{1}{2}, 1,2\right)\)
3 \(\left(\frac{1}{2}, 3,1\right)\)
4 \((1,3,2)\)
Integral Calculus

86284 \(\int \frac{d x}{\sin x+\sin 2 x}=\)

1 \(\frac{1}{2} \log _{\mathrm{e}}|1+\cos x|+\frac{1}{6} \log _{\mathrm{e}}|1-\cos x|-\frac{2}{3} \log _{\mathrm{e}}|1+2 \cos x|+c\)
2 \(\frac{1}{3} \log _{\mathrm{e}}|1+\cos \mathrm{x}|-\frac{2}{3} \log _{\mathrm{e}}|1-\cos \mathrm{x}|+\frac{1}{2} \log _{\mathrm{e}}|1+2 \cos \mathrm{x}|+\mathrm{c}\)
3 \(\frac{1}{2} \log _{\mathrm{e}}|1+\sin \mathrm{x}|-\frac{1}{3} \log _{\mathrm{e}}|1-\sin \mathrm{x}|-\frac{1}{3} \log _{\mathrm{e}}|1+\cos \mathrm{x}|+\mathrm{c}\)
4 \(\frac{1}{3} \log _{\mathrm{e}}|1-\sin \mathrm{x}|+\frac{1}{2} \log _{\mathrm{e}}|1+\cos \mathrm{x}|-\frac{2}{3} \log _{\mathrm{e}}|1-2 \cos \mathrm{x}|+\mathrm{c}\)
Integral Calculus

86269 If \(\int e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x=\)

1 \(e^{x} \tan \frac{x}{2}+C\)
2 \(e^{x} \cot \frac{x}{2}+C\)
3 \(\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}+\mathrm{C}\)
4 \(e^{x} \cos \mathrm{x}+C\)
Integral Calculus

86271 \(\int \tan ^{-1} x d x=\)

1 \(x \tan ^{-1} \mathrm{x}+\frac{1}{2} \log \left(1+\mathrm{x}^{2}\right)\)
2 \(x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)\)
3 \((x-1) \tan ^{-1}\)
4 \(x \tan ^{-1} x-\log x\)
Integral Calculus

86339 If
\(\int \frac{x+5}{x^{2}+4 x+5} d x=a \log \left(x^{2}+4 x+5\right)\)
\(+\operatorname{btan}^{-1}(x+k)+C\), then \((a, b, k)\) equals

1 \(\left(\frac{1}{2}, 3,2\right)\)
2 \(\left(\frac{1}{2}, 1,2\right)\)
3 \(\left(\frac{1}{2}, 3,1\right)\)
4 \((1,3,2)\)
Integral Calculus

86284 \(\int \frac{d x}{\sin x+\sin 2 x}=\)

1 \(\frac{1}{2} \log _{\mathrm{e}}|1+\cos x|+\frac{1}{6} \log _{\mathrm{e}}|1-\cos x|-\frac{2}{3} \log _{\mathrm{e}}|1+2 \cos x|+c\)
2 \(\frac{1}{3} \log _{\mathrm{e}}|1+\cos \mathrm{x}|-\frac{2}{3} \log _{\mathrm{e}}|1-\cos \mathrm{x}|+\frac{1}{2} \log _{\mathrm{e}}|1+2 \cos \mathrm{x}|+\mathrm{c}\)
3 \(\frac{1}{2} \log _{\mathrm{e}}|1+\sin \mathrm{x}|-\frac{1}{3} \log _{\mathrm{e}}|1-\sin \mathrm{x}|-\frac{1}{3} \log _{\mathrm{e}}|1+\cos \mathrm{x}|+\mathrm{c}\)
4 \(\frac{1}{3} \log _{\mathrm{e}}|1-\sin \mathrm{x}|+\frac{1}{2} \log _{\mathrm{e}}|1+\cos \mathrm{x}|-\frac{2}{3} \log _{\mathrm{e}}|1-2 \cos \mathrm{x}|+\mathrm{c}\)
Integral Calculus

86269 If \(\int e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x=\)

1 \(e^{x} \tan \frac{x}{2}+C\)
2 \(e^{x} \cot \frac{x}{2}+C\)
3 \(\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}+\mathrm{C}\)
4 \(e^{x} \cos \mathrm{x}+C\)
Integral Calculus

86271 \(\int \tan ^{-1} x d x=\)

1 \(x \tan ^{-1} \mathrm{x}+\frac{1}{2} \log \left(1+\mathrm{x}^{2}\right)\)
2 \(x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)\)
3 \((x-1) \tan ^{-1}\)
4 \(x \tan ^{-1} x-\log x\)
Integral Calculus

86339 If
\(\int \frac{x+5}{x^{2}+4 x+5} d x=a \log \left(x^{2}+4 x+5\right)\)
\(+\operatorname{btan}^{-1}(x+k)+C\), then \((a, b, k)\) equals

1 \(\left(\frac{1}{2}, 3,2\right)\)
2 \(\left(\frac{1}{2}, 1,2\right)\)
3 \(\left(\frac{1}{2}, 3,1\right)\)
4 \((1,3,2)\)
Integral Calculus

86284 \(\int \frac{d x}{\sin x+\sin 2 x}=\)

1 \(\frac{1}{2} \log _{\mathrm{e}}|1+\cos x|+\frac{1}{6} \log _{\mathrm{e}}|1-\cos x|-\frac{2}{3} \log _{\mathrm{e}}|1+2 \cos x|+c\)
2 \(\frac{1}{3} \log _{\mathrm{e}}|1+\cos \mathrm{x}|-\frac{2}{3} \log _{\mathrm{e}}|1-\cos \mathrm{x}|+\frac{1}{2} \log _{\mathrm{e}}|1+2 \cos \mathrm{x}|+\mathrm{c}\)
3 \(\frac{1}{2} \log _{\mathrm{e}}|1+\sin \mathrm{x}|-\frac{1}{3} \log _{\mathrm{e}}|1-\sin \mathrm{x}|-\frac{1}{3} \log _{\mathrm{e}}|1+\cos \mathrm{x}|+\mathrm{c}\)
4 \(\frac{1}{3} \log _{\mathrm{e}}|1-\sin \mathrm{x}|+\frac{1}{2} \log _{\mathrm{e}}|1+\cos \mathrm{x}|-\frac{2}{3} \log _{\mathrm{e}}|1-2 \cos \mathrm{x}|+\mathrm{c}\)
Integral Calculus

86269 If \(\int e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x=\)

1 \(e^{x} \tan \frac{x}{2}+C\)
2 \(e^{x} \cot \frac{x}{2}+C\)
3 \(\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}+\mathrm{C}\)
4 \(e^{x} \cos \mathrm{x}+C\)
Integral Calculus

86271 \(\int \tan ^{-1} x d x=\)

1 \(x \tan ^{-1} \mathrm{x}+\frac{1}{2} \log \left(1+\mathrm{x}^{2}\right)\)
2 \(x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)\)
3 \((x-1) \tan ^{-1}\)
4 \(x \tan ^{-1} x-\log x\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here