Integration by Parts
Integral Calculus

86354 \(\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x\) is equal to

1 \(x-\sin ^{-1} x+C\)
2 \(x-\sqrt{1-x^{2}} \sin ^{-1} x+C\)
3 \(x+\sin ^{-1} x+C\)
4 \(x+\sqrt{1-x^{2}} \sin ^{-1} x+C\)
5 \(x \sin ^{-1} x+\sqrt{1-x^{2}}+C\)
Integral Calculus

86355 \(\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{dx}\) is equal to

1 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
2 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
3 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1+\mathrm{x}}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
4 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{2}}\right)+\mathrm{C}\)
5 \(e^{x}\left(\frac{1}{\left(1+x^{2}\right)^{2}}\right)+C\)
Integral Calculus

86279 If \(I(x)=I(x)=\int e^{\sin ^{2} x} \cdot(\cos x \cdot \sin 2 x-\sin x) d x\) and \(I(0)=1\), then \(I\left(\frac{\pi}{3}\right)\) is equal to

1 \(-\frac{1}{2} \mathrm{e}^{\frac{3}{4}}\)
2 \(\mathrm{e}^{\frac{3}{4}}\)
3 \(\frac{1}{2} \mathrm{e}^{\frac{3}{4}}\)
4 \(-\mathrm{e}^{\frac{3}{4}}\)
Integral Calculus

86280 \(\int \cos \sqrt{x} d x=\)

1 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}+2 \cos \sqrt{\mathrm{x}}+\mathrm{c}\)
2 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}+2 \sin \sqrt{\mathrm{x}}+\mathrm{c}\)
3 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}-2 \cos \sqrt{\mathrm{x}}+\mathrm{c}\)
4 \(\sqrt{\mathrm{x}} \cos \sqrt{\mathrm{x}}-2 \sin \sqrt{\mathrm{x}}+\mathrm{c}\)
Integral Calculus

86281 If \(\int \cdot\left[\cos (x) \cdot \frac{d}{d x}(\operatorname{cosec}(x)] d x=f(x)+g(x)+\mathbf{c}\right.\), then \(\mathbf{f}(\mathbf{x}) . \mathbf{g}(\mathbf{x})=\)

1 \(x \cot (x)\)
2 \(x \tan (x)\)
3 \(x \cos (x)\)
4 1
Integral Calculus

86354 \(\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x\) is equal to

1 \(x-\sin ^{-1} x+C\)
2 \(x-\sqrt{1-x^{2}} \sin ^{-1} x+C\)
3 \(x+\sin ^{-1} x+C\)
4 \(x+\sqrt{1-x^{2}} \sin ^{-1} x+C\)
5 \(x \sin ^{-1} x+\sqrt{1-x^{2}}+C\)
Integral Calculus

86355 \(\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{dx}\) is equal to

1 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
2 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
3 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1+\mathrm{x}}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
4 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{2}}\right)+\mathrm{C}\)
5 \(e^{x}\left(\frac{1}{\left(1+x^{2}\right)^{2}}\right)+C\)
Integral Calculus

86279 If \(I(x)=I(x)=\int e^{\sin ^{2} x} \cdot(\cos x \cdot \sin 2 x-\sin x) d x\) and \(I(0)=1\), then \(I\left(\frac{\pi}{3}\right)\) is equal to

1 \(-\frac{1}{2} \mathrm{e}^{\frac{3}{4}}\)
2 \(\mathrm{e}^{\frac{3}{4}}\)
3 \(\frac{1}{2} \mathrm{e}^{\frac{3}{4}}\)
4 \(-\mathrm{e}^{\frac{3}{4}}\)
Integral Calculus

86280 \(\int \cos \sqrt{x} d x=\)

1 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}+2 \cos \sqrt{\mathrm{x}}+\mathrm{c}\)
2 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}+2 \sin \sqrt{\mathrm{x}}+\mathrm{c}\)
3 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}-2 \cos \sqrt{\mathrm{x}}+\mathrm{c}\)
4 \(\sqrt{\mathrm{x}} \cos \sqrt{\mathrm{x}}-2 \sin \sqrt{\mathrm{x}}+\mathrm{c}\)
Integral Calculus

86281 If \(\int \cdot\left[\cos (x) \cdot \frac{d}{d x}(\operatorname{cosec}(x)] d x=f(x)+g(x)+\mathbf{c}\right.\), then \(\mathbf{f}(\mathbf{x}) . \mathbf{g}(\mathbf{x})=\)

1 \(x \cot (x)\)
2 \(x \tan (x)\)
3 \(x \cos (x)\)
4 1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86354 \(\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x\) is equal to

1 \(x-\sin ^{-1} x+C\)
2 \(x-\sqrt{1-x^{2}} \sin ^{-1} x+C\)
3 \(x+\sin ^{-1} x+C\)
4 \(x+\sqrt{1-x^{2}} \sin ^{-1} x+C\)
5 \(x \sin ^{-1} x+\sqrt{1-x^{2}}+C\)
Integral Calculus

86355 \(\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{dx}\) is equal to

1 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
2 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
3 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1+\mathrm{x}}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
4 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{2}}\right)+\mathrm{C}\)
5 \(e^{x}\left(\frac{1}{\left(1+x^{2}\right)^{2}}\right)+C\)
Integral Calculus

86279 If \(I(x)=I(x)=\int e^{\sin ^{2} x} \cdot(\cos x \cdot \sin 2 x-\sin x) d x\) and \(I(0)=1\), then \(I\left(\frac{\pi}{3}\right)\) is equal to

1 \(-\frac{1}{2} \mathrm{e}^{\frac{3}{4}}\)
2 \(\mathrm{e}^{\frac{3}{4}}\)
3 \(\frac{1}{2} \mathrm{e}^{\frac{3}{4}}\)
4 \(-\mathrm{e}^{\frac{3}{4}}\)
Integral Calculus

86280 \(\int \cos \sqrt{x} d x=\)

1 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}+2 \cos \sqrt{\mathrm{x}}+\mathrm{c}\)
2 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}+2 \sin \sqrt{\mathrm{x}}+\mathrm{c}\)
3 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}-2 \cos \sqrt{\mathrm{x}}+\mathrm{c}\)
4 \(\sqrt{\mathrm{x}} \cos \sqrt{\mathrm{x}}-2 \sin \sqrt{\mathrm{x}}+\mathrm{c}\)
Integral Calculus

86281 If \(\int \cdot\left[\cos (x) \cdot \frac{d}{d x}(\operatorname{cosec}(x)] d x=f(x)+g(x)+\mathbf{c}\right.\), then \(\mathbf{f}(\mathbf{x}) . \mathbf{g}(\mathbf{x})=\)

1 \(x \cot (x)\)
2 \(x \tan (x)\)
3 \(x \cos (x)\)
4 1
Integral Calculus

86354 \(\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x\) is equal to

1 \(x-\sin ^{-1} x+C\)
2 \(x-\sqrt{1-x^{2}} \sin ^{-1} x+C\)
3 \(x+\sin ^{-1} x+C\)
4 \(x+\sqrt{1-x^{2}} \sin ^{-1} x+C\)
5 \(x \sin ^{-1} x+\sqrt{1-x^{2}}+C\)
Integral Calculus

86355 \(\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{dx}\) is equal to

1 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
2 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
3 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1+\mathrm{x}}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
4 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{2}}\right)+\mathrm{C}\)
5 \(e^{x}\left(\frac{1}{\left(1+x^{2}\right)^{2}}\right)+C\)
Integral Calculus

86279 If \(I(x)=I(x)=\int e^{\sin ^{2} x} \cdot(\cos x \cdot \sin 2 x-\sin x) d x\) and \(I(0)=1\), then \(I\left(\frac{\pi}{3}\right)\) is equal to

1 \(-\frac{1}{2} \mathrm{e}^{\frac{3}{4}}\)
2 \(\mathrm{e}^{\frac{3}{4}}\)
3 \(\frac{1}{2} \mathrm{e}^{\frac{3}{4}}\)
4 \(-\mathrm{e}^{\frac{3}{4}}\)
Integral Calculus

86280 \(\int \cos \sqrt{x} d x=\)

1 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}+2 \cos \sqrt{\mathrm{x}}+\mathrm{c}\)
2 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}+2 \sin \sqrt{\mathrm{x}}+\mathrm{c}\)
3 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}-2 \cos \sqrt{\mathrm{x}}+\mathrm{c}\)
4 \(\sqrt{\mathrm{x}} \cos \sqrt{\mathrm{x}}-2 \sin \sqrt{\mathrm{x}}+\mathrm{c}\)
Integral Calculus

86281 If \(\int \cdot\left[\cos (x) \cdot \frac{d}{d x}(\operatorname{cosec}(x)] d x=f(x)+g(x)+\mathbf{c}\right.\), then \(\mathbf{f}(\mathbf{x}) . \mathbf{g}(\mathbf{x})=\)

1 \(x \cot (x)\)
2 \(x \tan (x)\)
3 \(x \cos (x)\)
4 1
Integral Calculus

86354 \(\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x\) is equal to

1 \(x-\sin ^{-1} x+C\)
2 \(x-\sqrt{1-x^{2}} \sin ^{-1} x+C\)
3 \(x+\sin ^{-1} x+C\)
4 \(x+\sqrt{1-x^{2}} \sin ^{-1} x+C\)
5 \(x \sin ^{-1} x+\sqrt{1-x^{2}}+C\)
Integral Calculus

86355 \(\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{dx}\) is equal to

1 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
2 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
3 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1+\mathrm{x}}{1+\mathrm{x}^{2}}\right)+\mathrm{C}\)
4 \(\mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{2}}\right)+\mathrm{C}\)
5 \(e^{x}\left(\frac{1}{\left(1+x^{2}\right)^{2}}\right)+C\)
Integral Calculus

86279 If \(I(x)=I(x)=\int e^{\sin ^{2} x} \cdot(\cos x \cdot \sin 2 x-\sin x) d x\) and \(I(0)=1\), then \(I\left(\frac{\pi}{3}\right)\) is equal to

1 \(-\frac{1}{2} \mathrm{e}^{\frac{3}{4}}\)
2 \(\mathrm{e}^{\frac{3}{4}}\)
3 \(\frac{1}{2} \mathrm{e}^{\frac{3}{4}}\)
4 \(-\mathrm{e}^{\frac{3}{4}}\)
Integral Calculus

86280 \(\int \cos \sqrt{x} d x=\)

1 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}+2 \cos \sqrt{\mathrm{x}}+\mathrm{c}\)
2 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}+2 \sin \sqrt{\mathrm{x}}+\mathrm{c}\)
3 \(2 \sqrt{\mathrm{x}} \sin \sqrt{\mathrm{x}}-2 \cos \sqrt{\mathrm{x}}+\mathrm{c}\)
4 \(\sqrt{\mathrm{x}} \cos \sqrt{\mathrm{x}}-2 \sin \sqrt{\mathrm{x}}+\mathrm{c}\)
Integral Calculus

86281 If \(\int \cdot\left[\cos (x) \cdot \frac{d}{d x}(\operatorname{cosec}(x)] d x=f(x)+g(x)+\mathbf{c}\right.\), then \(\mathbf{f}(\mathbf{x}) . \mathbf{g}(\mathbf{x})=\)

1 \(x \cot (x)\)
2 \(x \tan (x)\)
3 \(x \cos (x)\)
4 1