Integration by Parts
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86363 If \(\frac{1}{x(x+1)(x+2) \ldots(x+n)}=\frac{A_{0}}{x}+\frac{A_{1}}{x+1}\) \(+\frac{A_{2}}{x+1}+\ldots . \frac{A_{n}}{x+n}\) then \(A_{r}\) is equal to

1 \(\frac{\mathrm{r} !(1)^{\mathrm{r}}}{(\mathrm{n}-\mathrm{r}) !}\)
2 \(\frac{(-1)^{r}}{r !(n-r) !}\)
3 \(\frac{1}{r !(n-r) !}\)
4 None of these
Integral Calculus

86364 \(\int \frac{d x}{x^{2}\left(x^{n}+1\right)^{\frac{(n-1)}{n}}}=[f(x)]^{1 / n}+C\) then \(f(x)\) is

1 \(1+x^{n}\)
2 \(1+\mathrm{x}^{-\mathrm{n}}\)
3 \(\mathrm{x}^{\mathrm{n}}+\mathrm{x}^{-\mathrm{n}}\)
4 None of these
Integral Calculus

86260 The value of \(\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x\) is-

1 \(\tan x-\cot x+C\)
2 \(\tan x+\cot x+C\)
3 \(-\tan x-\cot x+C\)
4 None of these
Integral Calculus

86261 \(\int \frac{d x}{1-\sin x}=\)

1 \(x+\cos x+C\)
2 \(1+\sin x+C\)
3 \(\sec x-\tan x+C\)
4 \(\sec x+\tan x+C\)
Integral Calculus

86363 If \(\frac{1}{x(x+1)(x+2) \ldots(x+n)}=\frac{A_{0}}{x}+\frac{A_{1}}{x+1}\) \(+\frac{A_{2}}{x+1}+\ldots . \frac{A_{n}}{x+n}\) then \(A_{r}\) is equal to

1 \(\frac{\mathrm{r} !(1)^{\mathrm{r}}}{(\mathrm{n}-\mathrm{r}) !}\)
2 \(\frac{(-1)^{r}}{r !(n-r) !}\)
3 \(\frac{1}{r !(n-r) !}\)
4 None of these
Integral Calculus

86364 \(\int \frac{d x}{x^{2}\left(x^{n}+1\right)^{\frac{(n-1)}{n}}}=[f(x)]^{1 / n}+C\) then \(f(x)\) is

1 \(1+x^{n}\)
2 \(1+\mathrm{x}^{-\mathrm{n}}\)
3 \(\mathrm{x}^{\mathrm{n}}+\mathrm{x}^{-\mathrm{n}}\)
4 None of these
Integral Calculus

86260 The value of \(\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x\) is-

1 \(\tan x-\cot x+C\)
2 \(\tan x+\cot x+C\)
3 \(-\tan x-\cot x+C\)
4 None of these
Integral Calculus

86261 \(\int \frac{d x}{1-\sin x}=\)

1 \(x+\cos x+C\)
2 \(1+\sin x+C\)
3 \(\sec x-\tan x+C\)
4 \(\sec x+\tan x+C\)
Integral Calculus

86363 If \(\frac{1}{x(x+1)(x+2) \ldots(x+n)}=\frac{A_{0}}{x}+\frac{A_{1}}{x+1}\) \(+\frac{A_{2}}{x+1}+\ldots . \frac{A_{n}}{x+n}\) then \(A_{r}\) is equal to

1 \(\frac{\mathrm{r} !(1)^{\mathrm{r}}}{(\mathrm{n}-\mathrm{r}) !}\)
2 \(\frac{(-1)^{r}}{r !(n-r) !}\)
3 \(\frac{1}{r !(n-r) !}\)
4 None of these
Integral Calculus

86364 \(\int \frac{d x}{x^{2}\left(x^{n}+1\right)^{\frac{(n-1)}{n}}}=[f(x)]^{1 / n}+C\) then \(f(x)\) is

1 \(1+x^{n}\)
2 \(1+\mathrm{x}^{-\mathrm{n}}\)
3 \(\mathrm{x}^{\mathrm{n}}+\mathrm{x}^{-\mathrm{n}}\)
4 None of these
Integral Calculus

86260 The value of \(\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x\) is-

1 \(\tan x-\cot x+C\)
2 \(\tan x+\cot x+C\)
3 \(-\tan x-\cot x+C\)
4 None of these
Integral Calculus

86261 \(\int \frac{d x}{1-\sin x}=\)

1 \(x+\cos x+C\)
2 \(1+\sin x+C\)
3 \(\sec x-\tan x+C\)
4 \(\sec x+\tan x+C\)
Integral Calculus

86363 If \(\frac{1}{x(x+1)(x+2) \ldots(x+n)}=\frac{A_{0}}{x}+\frac{A_{1}}{x+1}\) \(+\frac{A_{2}}{x+1}+\ldots . \frac{A_{n}}{x+n}\) then \(A_{r}\) is equal to

1 \(\frac{\mathrm{r} !(1)^{\mathrm{r}}}{(\mathrm{n}-\mathrm{r}) !}\)
2 \(\frac{(-1)^{r}}{r !(n-r) !}\)
3 \(\frac{1}{r !(n-r) !}\)
4 None of these
Integral Calculus

86364 \(\int \frac{d x}{x^{2}\left(x^{n}+1\right)^{\frac{(n-1)}{n}}}=[f(x)]^{1 / n}+C\) then \(f(x)\) is

1 \(1+x^{n}\)
2 \(1+\mathrm{x}^{-\mathrm{n}}\)
3 \(\mathrm{x}^{\mathrm{n}}+\mathrm{x}^{-\mathrm{n}}\)
4 None of these
Integral Calculus

86260 The value of \(\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x\) is-

1 \(\tan x-\cot x+C\)
2 \(\tan x+\cot x+C\)
3 \(-\tan x-\cot x+C\)
4 None of these
Integral Calculus

86261 \(\int \frac{d x}{1-\sin x}=\)

1 \(x+\cos x+C\)
2 \(1+\sin x+C\)
3 \(\sec x-\tan x+C\)
4 \(\sec x+\tan x+C\)