Integration by Parts
Integral Calculus

86257 0π/4sinxcosxcos4x+sin4xdx is equal to

1 8π
2 π/4
3 4π
4 π/8
Integral Calculus

86258 dx1cosxsinx is equal to

1 log|1+cotx2|+C
2 log|1tanx2|+C
3 log|1cotx2|+C
4 log|1+tanx2|+C
Integral Calculus

86259 Evaluate : 0π/21a2sin2x+b2cos2xdx

1 πa4 b
2 πa2 b
3 πb4a
4 π2ab
Integral Calculus

86262 Evaluate : 11+3sin2x+8cos2xdx

1 16tan1(2tanx)+C
2 tan1(2tanx)+C
3 16tan1(2tanx3)+C
4 None of these
Integral Calculus

86256 If x>0,x37x+6x(x+3)dx=ax+bx2+clnx+d, then a+b+c=

1 0
2 12
3 12
4 -1
Integral Calculus

86257 0π/4sinxcosxcos4x+sin4xdx is equal to

1 8π
2 π/4
3 4π
4 π/8
Integral Calculus

86258 dx1cosxsinx is equal to

1 log|1+cotx2|+C
2 log|1tanx2|+C
3 log|1cotx2|+C
4 log|1+tanx2|+C
Integral Calculus

86259 Evaluate : 0π/21a2sin2x+b2cos2xdx

1 πa4 b
2 πa2 b
3 πb4a
4 π2ab
Integral Calculus

86262 Evaluate : 11+3sin2x+8cos2xdx

1 16tan1(2tanx)+C
2 tan1(2tanx)+C
3 16tan1(2tanx3)+C
4 None of these
Integral Calculus

86256 If x>0,x37x+6x(x+3)dx=ax+bx2+clnx+d, then a+b+c=

1 0
2 12
3 12
4 -1
Integral Calculus

86257 0π/4sinxcosxcos4x+sin4xdx is equal to

1 8π
2 π/4
3 4π
4 π/8
Integral Calculus

86258 dx1cosxsinx is equal to

1 log|1+cotx2|+C
2 log|1tanx2|+C
3 log|1cotx2|+C
4 log|1+tanx2|+C
Integral Calculus

86259 Evaluate : 0π/21a2sin2x+b2cos2xdx

1 πa4 b
2 πa2 b
3 πb4a
4 π2ab
Integral Calculus

86262 Evaluate : 11+3sin2x+8cos2xdx

1 16tan1(2tanx)+C
2 tan1(2tanx)+C
3 16tan1(2tanx3)+C
4 None of these
Integral Calculus

86256 If x>0,x37x+6x(x+3)dx=ax+bx2+clnx+d, then a+b+c=

1 0
2 12
3 12
4 -1
Integral Calculus

86257 0π/4sinxcosxcos4x+sin4xdx is equal to

1 8π
2 π/4
3 4π
4 π/8
Integral Calculus

86258 dx1cosxsinx is equal to

1 log|1+cotx2|+C
2 log|1tanx2|+C
3 log|1cotx2|+C
4 log|1+tanx2|+C
Integral Calculus

86259 Evaluate : 0π/21a2sin2x+b2cos2xdx

1 πa4 b
2 πa2 b
3 πb4a
4 π2ab
Integral Calculus

86262 Evaluate : 11+3sin2x+8cos2xdx

1 16tan1(2tanx)+C
2 tan1(2tanx)+C
3 16tan1(2tanx3)+C
4 None of these
Integral Calculus

86256 If x>0,x37x+6x(x+3)dx=ax+bx2+clnx+d, then a+b+c=

1 0
2 12
3 12
4 -1
Integral Calculus

86257 0π/4sinxcosxcos4x+sin4xdx is equal to

1 8π
2 π/4
3 4π
4 π/8
Integral Calculus

86258 dx1cosxsinx is equal to

1 log|1+cotx2|+C
2 log|1tanx2|+C
3 log|1cotx2|+C
4 log|1+tanx2|+C
Integral Calculus

86259 Evaluate : 0π/21a2sin2x+b2cos2xdx

1 πa4 b
2 πa2 b
3 πb4a
4 π2ab
Integral Calculus

86262 Evaluate : 11+3sin2x+8cos2xdx

1 16tan1(2tanx)+C
2 tan1(2tanx)+C
3 16tan1(2tanx3)+C
4 None of these