86256 If x>0,∫x3−7x+6x(x+3)dx=ax+bx2+clnx+d, then a+b+c=
(C) : Given,∫x3−7x+6x(x+3)dx=ax+bx2+clnx+dL.H.S., I=∫x3−7x+6x(x+3)dx=∫x3−7x+6x2+3xdx=∫(x−3+2x+6x2+3x)dx=∫x⋅dx−∫3dx+∫2x+3x2+3xdx+3∫1x2+3xdx=x22−3x+ln(x2+3x)+3∫1x(x+3)dx=x22−3x+ln(x2+3x)+3×13∫(1x−1x+3)dx=x22−3x+ln(x2+3x)+lnx−ln(x+3)+C=x22−3x+ln(x2+3x×xx+3)+C=x22−3x+ln(x(x+3)×xx+3)+C=x22−3x+lnx2+C=x22−3x+2lnx+COn comparing L.H.S. and R.H.S., we get -a=−3, b=12,c=2Then, a+b+c=−3+12+2=−12
86257 ∫0π/4sinxcosxcos4x+sin4xdx is equal to
(D) : Let,I=∫0π/4sinx⋅cosxcos4x+sin4xdx=∫0π/4sinx⋅cosxcos4x+sin4x+2sin2⋅cos2x−2sin2x⋅cos2x⋅dx=∫0π/4sinx⋅cosx(cos2x+sin2x)2−2sin2x⋅cos2xdx=∫0π/4sinx⋅cosx1−4sin2x⋅cos2x2dx=∫0π/42sinx⋅cosx2−sin22xdx=∫0π/4sin2x1+cos22xdxLet, cos2x=t−2sin2x.dx=dt∴I=−12∫10dt1+t2=−12[tan−1(t)]10=−12[tan−1(0)−tan−1(1)]=−12[0−π4]=π8
86258 ∫dx1−cosx−sinx is equal to
(C) :Let, I=∫dx1−cosx−sinxPut, cosx=1−tan2x21+tan2x2 and sinx=2tanx21+tan2x2∴I=∫dx1−(1−tan2x21+tan2x2)−2tanx21+tan2x2=∫sec2x2dx2tan2x2−2tanx2=∫12sec2x2dxtan2x2−tanx2Put, tanx2=t⇒12sec2x2dx=dt∴I=∫dtt2−t=∫[1t−1−1t]dt=log(t−1)−logt+C=log|t−1t|+C=log|tanx2−1tanx2|+C=log|1−cotx2|+C
86259 Evaluate : ∫0π/21a2sin2x+b2cos2xdx
(D) : Let,I=∫0π/21a2sin2x+b2cos2xdxDividing numerator and denominator by cos2x we getI=∫0π/2sec2xdxa2tan2x+b2Put, tanx=t⇒sec2xdx=dtWhen, x=0⇒t=0 and when x=π2⇒t=∞⇒I=∫0∞dta2t2+b2=1a2∫0∞dtt2+(ba)2=1a2×1(ba)[tan−1t(b/a)]0∞=1ab×π2=π2ab
86262 Evaluate : ∫11+3sin2x+8cos2xdx
(C) : Let,I=∫11+3sin2x+8cos2xdxDividing the numerator and denominator by cos2x, we getI=∫sec2xsec2x+3tan2x+8dx=∫sec2x4tan2x+9dxPutting tanx=t⇒sec2xdx=dt, we getI=∫dt4t2+9=14∫dtt2+(3/2)2=14×13/2tan−1(t3/2)+C⇒I=16tan−1(2t3)+C=16tan−1(2tanx3)+C