Integration by Parts
Integral Calculus

86221 The value of \(\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x\) is equal \(t\)

1 0
2 \(\frac{x^{3}}{3}\)
3 \(\frac{3}{\mathrm{x}^{3}}\)
4 \(\frac{1}{\mathrm{x}}\)
Integral Calculus

86224 \(\int \frac{(x-1) e^{x}}{(x+1)^{3}} d x=\)

1 \(\frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}+1}+\mathrm{C}\)
2 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+1)^{2}}+\mathrm{C}\)
3 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+1)^{3}}+\mathrm{C}\)
4 \(\frac{x \cdot e^{x}}{(x+1)}+C\)
Integral Calculus

86227 \(\int(1+x) \log x d x=\)

1 \(\left(x+\frac{x^{2}}{2}\right) \log x-\left(x-\frac{x^{2}}{4}\right)+C\)
2 \(\left(x+\frac{x^{2}}{2}\right) \log x-\left(x+\frac{x^{2}}{4}\right)+C\)
3 \(\left(x+\frac{x^{2}}{2}\right) \log x+\left(x+\frac{x^{2}}{4}\right)+C\)
4 \(\left(x+\frac{x^{2}}{2}\right) \log x+\left(x-\frac{x^{2}}{4}\right)+C\)
Integral Calculus

86238 \(\int \frac{d x}{x^{2}+4 x+13}=\)

1 \(\frac{1}{6} \tan ^{-1}\left(\frac{\mathrm{x}+2}{3}\right)+\mathrm{c}\)
2 \(3 \tan ^{-1}\left(\frac{\mathrm{x}+2}{3}\right)+\mathrm{c}\)
3 \(\frac{1}{6} \log \left(\frac{x-1}{x+5}\right)+c\)
4 \(\frac{1}{3} \tan ^{-1}\left(\frac{\mathrm{x}+2}{3}\right)+\mathrm{c}\)
Integral Calculus

86221 The value of \(\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x\) is equal \(t\)

1 0
2 \(\frac{x^{3}}{3}\)
3 \(\frac{3}{\mathrm{x}^{3}}\)
4 \(\frac{1}{\mathrm{x}}\)
Integral Calculus

86224 \(\int \frac{(x-1) e^{x}}{(x+1)^{3}} d x=\)

1 \(\frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}+1}+\mathrm{C}\)
2 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+1)^{2}}+\mathrm{C}\)
3 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+1)^{3}}+\mathrm{C}\)
4 \(\frac{x \cdot e^{x}}{(x+1)}+C\)
Integral Calculus

86227 \(\int(1+x) \log x d x=\)

1 \(\left(x+\frac{x^{2}}{2}\right) \log x-\left(x-\frac{x^{2}}{4}\right)+C\)
2 \(\left(x+\frac{x^{2}}{2}\right) \log x-\left(x+\frac{x^{2}}{4}\right)+C\)
3 \(\left(x+\frac{x^{2}}{2}\right) \log x+\left(x+\frac{x^{2}}{4}\right)+C\)
4 \(\left(x+\frac{x^{2}}{2}\right) \log x+\left(x-\frac{x^{2}}{4}\right)+C\)
Integral Calculus

86238 \(\int \frac{d x}{x^{2}+4 x+13}=\)

1 \(\frac{1}{6} \tan ^{-1}\left(\frac{\mathrm{x}+2}{3}\right)+\mathrm{c}\)
2 \(3 \tan ^{-1}\left(\frac{\mathrm{x}+2}{3}\right)+\mathrm{c}\)
3 \(\frac{1}{6} \log \left(\frac{x-1}{x+5}\right)+c\)
4 \(\frac{1}{3} \tan ^{-1}\left(\frac{\mathrm{x}+2}{3}\right)+\mathrm{c}\)
Integral Calculus

86221 The value of \(\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x\) is equal \(t\)

1 0
2 \(\frac{x^{3}}{3}\)
3 \(\frac{3}{\mathrm{x}^{3}}\)
4 \(\frac{1}{\mathrm{x}}\)
Integral Calculus

86224 \(\int \frac{(x-1) e^{x}}{(x+1)^{3}} d x=\)

1 \(\frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}+1}+\mathrm{C}\)
2 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+1)^{2}}+\mathrm{C}\)
3 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+1)^{3}}+\mathrm{C}\)
4 \(\frac{x \cdot e^{x}}{(x+1)}+C\)
Integral Calculus

86227 \(\int(1+x) \log x d x=\)

1 \(\left(x+\frac{x^{2}}{2}\right) \log x-\left(x-\frac{x^{2}}{4}\right)+C\)
2 \(\left(x+\frac{x^{2}}{2}\right) \log x-\left(x+\frac{x^{2}}{4}\right)+C\)
3 \(\left(x+\frac{x^{2}}{2}\right) \log x+\left(x+\frac{x^{2}}{4}\right)+C\)
4 \(\left(x+\frac{x^{2}}{2}\right) \log x+\left(x-\frac{x^{2}}{4}\right)+C\)
Integral Calculus

86238 \(\int \frac{d x}{x^{2}+4 x+13}=\)

1 \(\frac{1}{6} \tan ^{-1}\left(\frac{\mathrm{x}+2}{3}\right)+\mathrm{c}\)
2 \(3 \tan ^{-1}\left(\frac{\mathrm{x}+2}{3}\right)+\mathrm{c}\)
3 \(\frac{1}{6} \log \left(\frac{x-1}{x+5}\right)+c\)
4 \(\frac{1}{3} \tan ^{-1}\left(\frac{\mathrm{x}+2}{3}\right)+\mathrm{c}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86221 The value of \(\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x\) is equal \(t\)

1 0
2 \(\frac{x^{3}}{3}\)
3 \(\frac{3}{\mathrm{x}^{3}}\)
4 \(\frac{1}{\mathrm{x}}\)
Integral Calculus

86224 \(\int \frac{(x-1) e^{x}}{(x+1)^{3}} d x=\)

1 \(\frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}+1}+\mathrm{C}\)
2 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+1)^{2}}+\mathrm{C}\)
3 \(\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+1)^{3}}+\mathrm{C}\)
4 \(\frac{x \cdot e^{x}}{(x+1)}+C\)
Integral Calculus

86227 \(\int(1+x) \log x d x=\)

1 \(\left(x+\frac{x^{2}}{2}\right) \log x-\left(x-\frac{x^{2}}{4}\right)+C\)
2 \(\left(x+\frac{x^{2}}{2}\right) \log x-\left(x+\frac{x^{2}}{4}\right)+C\)
3 \(\left(x+\frac{x^{2}}{2}\right) \log x+\left(x+\frac{x^{2}}{4}\right)+C\)
4 \(\left(x+\frac{x^{2}}{2}\right) \log x+\left(x-\frac{x^{2}}{4}\right)+C\)
Integral Calculus

86238 \(\int \frac{d x}{x^{2}+4 x+13}=\)

1 \(\frac{1}{6} \tan ^{-1}\left(\frac{\mathrm{x}+2}{3}\right)+\mathrm{c}\)
2 \(3 \tan ^{-1}\left(\frac{\mathrm{x}+2}{3}\right)+\mathrm{c}\)
3 \(\frac{1}{6} \log \left(\frac{x-1}{x+5}\right)+c\)
4 \(\frac{1}{3} \tan ^{-1}\left(\frac{\mathrm{x}+2}{3}\right)+\mathrm{c}\)