Integration by Parts
Integral Calculus

86256 If \(x>0, \int \frac{x^{3}-7 x+6}{x(x+3)} d x=a x+b x^{2}+c \ln x+d\), then \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\)

1 0
2 \(\frac{1}{2}\)
3 \(-\frac{1}{2}\)
4 -1
Integral Calculus

86257 \(\int_{0}^{\pi / 4} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x\) is equal to

1 \(8 \pi\)
2 \(\pi / 4\)
3 \(4 \pi\)
4 \(\pi / 8\)
Integral Calculus

86258 \(\int \frac{d x}{1-\cos x-\sin x}\) is equal to

1 \(\log \left|1+\cot \frac{x}{2}\right|+C\)
2 \(\log \left|1-\tan \frac{x}{2}\right|+C\)
3 \(\log \left|1-\cot \frac{\mathrm{x}}{2}\right|+\mathrm{C}\)
4 \(\log \left|1+\tan \frac{\mathrm{x}}{2}\right|+\mathrm{C}\)
Integral Calculus

86259 Evaluate : \(\int_{0}^{\pi / 2} \frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x} d x\)

1 \(\frac{\pi \mathrm{a}}{4 \mathrm{~b}}\)
2 \(\frac{\pi \mathrm{a}}{2 \mathrm{~b}}\)
3 \(\frac{\pi \mathrm{b}}{4 \mathrm{a}}\)
4 \(\frac{\pi}{2 \mathrm{ab}}\)
Integral Calculus

86262 Evaluate : \(\int \frac{1}{1+3 \sin ^{2} x+8 \cos ^{2} x} d x\)

1 \(\frac{1}{6} \tan ^{-1}(2 \tan x)+C\)
2 \(\tan ^{-1}(2 \tan x)+C\)
3 \(\frac{1}{6} \tan ^{-1}\left(\frac{2 \tan x}{3}\right)+C\)
4 None of these
Integral Calculus

86256 If \(x>0, \int \frac{x^{3}-7 x+6}{x(x+3)} d x=a x+b x^{2}+c \ln x+d\), then \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\)

1 0
2 \(\frac{1}{2}\)
3 \(-\frac{1}{2}\)
4 -1
Integral Calculus

86257 \(\int_{0}^{\pi / 4} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x\) is equal to

1 \(8 \pi\)
2 \(\pi / 4\)
3 \(4 \pi\)
4 \(\pi / 8\)
Integral Calculus

86258 \(\int \frac{d x}{1-\cos x-\sin x}\) is equal to

1 \(\log \left|1+\cot \frac{x}{2}\right|+C\)
2 \(\log \left|1-\tan \frac{x}{2}\right|+C\)
3 \(\log \left|1-\cot \frac{\mathrm{x}}{2}\right|+\mathrm{C}\)
4 \(\log \left|1+\tan \frac{\mathrm{x}}{2}\right|+\mathrm{C}\)
Integral Calculus

86259 Evaluate : \(\int_{0}^{\pi / 2} \frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x} d x\)

1 \(\frac{\pi \mathrm{a}}{4 \mathrm{~b}}\)
2 \(\frac{\pi \mathrm{a}}{2 \mathrm{~b}}\)
3 \(\frac{\pi \mathrm{b}}{4 \mathrm{a}}\)
4 \(\frac{\pi}{2 \mathrm{ab}}\)
Integral Calculus

86262 Evaluate : \(\int \frac{1}{1+3 \sin ^{2} x+8 \cos ^{2} x} d x\)

1 \(\frac{1}{6} \tan ^{-1}(2 \tan x)+C\)
2 \(\tan ^{-1}(2 \tan x)+C\)
3 \(\frac{1}{6} \tan ^{-1}\left(\frac{2 \tan x}{3}\right)+C\)
4 None of these
Integral Calculus

86256 If \(x>0, \int \frac{x^{3}-7 x+6}{x(x+3)} d x=a x+b x^{2}+c \ln x+d\), then \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\)

1 0
2 \(\frac{1}{2}\)
3 \(-\frac{1}{2}\)
4 -1
Integral Calculus

86257 \(\int_{0}^{\pi / 4} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x\) is equal to

1 \(8 \pi\)
2 \(\pi / 4\)
3 \(4 \pi\)
4 \(\pi / 8\)
Integral Calculus

86258 \(\int \frac{d x}{1-\cos x-\sin x}\) is equal to

1 \(\log \left|1+\cot \frac{x}{2}\right|+C\)
2 \(\log \left|1-\tan \frac{x}{2}\right|+C\)
3 \(\log \left|1-\cot \frac{\mathrm{x}}{2}\right|+\mathrm{C}\)
4 \(\log \left|1+\tan \frac{\mathrm{x}}{2}\right|+\mathrm{C}\)
Integral Calculus

86259 Evaluate : \(\int_{0}^{\pi / 2} \frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x} d x\)

1 \(\frac{\pi \mathrm{a}}{4 \mathrm{~b}}\)
2 \(\frac{\pi \mathrm{a}}{2 \mathrm{~b}}\)
3 \(\frac{\pi \mathrm{b}}{4 \mathrm{a}}\)
4 \(\frac{\pi}{2 \mathrm{ab}}\)
Integral Calculus

86262 Evaluate : \(\int \frac{1}{1+3 \sin ^{2} x+8 \cos ^{2} x} d x\)

1 \(\frac{1}{6} \tan ^{-1}(2 \tan x)+C\)
2 \(\tan ^{-1}(2 \tan x)+C\)
3 \(\frac{1}{6} \tan ^{-1}\left(\frac{2 \tan x}{3}\right)+C\)
4 None of these
Integral Calculus

86256 If \(x>0, \int \frac{x^{3}-7 x+6}{x(x+3)} d x=a x+b x^{2}+c \ln x+d\), then \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\)

1 0
2 \(\frac{1}{2}\)
3 \(-\frac{1}{2}\)
4 -1
Integral Calculus

86257 \(\int_{0}^{\pi / 4} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x\) is equal to

1 \(8 \pi\)
2 \(\pi / 4\)
3 \(4 \pi\)
4 \(\pi / 8\)
Integral Calculus

86258 \(\int \frac{d x}{1-\cos x-\sin x}\) is equal to

1 \(\log \left|1+\cot \frac{x}{2}\right|+C\)
2 \(\log \left|1-\tan \frac{x}{2}\right|+C\)
3 \(\log \left|1-\cot \frac{\mathrm{x}}{2}\right|+\mathrm{C}\)
4 \(\log \left|1+\tan \frac{\mathrm{x}}{2}\right|+\mathrm{C}\)
Integral Calculus

86259 Evaluate : \(\int_{0}^{\pi / 2} \frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x} d x\)

1 \(\frac{\pi \mathrm{a}}{4 \mathrm{~b}}\)
2 \(\frac{\pi \mathrm{a}}{2 \mathrm{~b}}\)
3 \(\frac{\pi \mathrm{b}}{4 \mathrm{a}}\)
4 \(\frac{\pi}{2 \mathrm{ab}}\)
Integral Calculus

86262 Evaluate : \(\int \frac{1}{1+3 \sin ^{2} x+8 \cos ^{2} x} d x\)

1 \(\frac{1}{6} \tan ^{-1}(2 \tan x)+C\)
2 \(\tan ^{-1}(2 \tan x)+C\)
3 \(\frac{1}{6} \tan ^{-1}\left(\frac{2 \tan x}{3}\right)+C\)
4 None of these
Integral Calculus

86256 If \(x>0, \int \frac{x^{3}-7 x+6}{x(x+3)} d x=a x+b x^{2}+c \ln x+d\), then \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\)

1 0
2 \(\frac{1}{2}\)
3 \(-\frac{1}{2}\)
4 -1
Integral Calculus

86257 \(\int_{0}^{\pi / 4} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x\) is equal to

1 \(8 \pi\)
2 \(\pi / 4\)
3 \(4 \pi\)
4 \(\pi / 8\)
Integral Calculus

86258 \(\int \frac{d x}{1-\cos x-\sin x}\) is equal to

1 \(\log \left|1+\cot \frac{x}{2}\right|+C\)
2 \(\log \left|1-\tan \frac{x}{2}\right|+C\)
3 \(\log \left|1-\cot \frac{\mathrm{x}}{2}\right|+\mathrm{C}\)
4 \(\log \left|1+\tan \frac{\mathrm{x}}{2}\right|+\mathrm{C}\)
Integral Calculus

86259 Evaluate : \(\int_{0}^{\pi / 2} \frac{1}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x} d x\)

1 \(\frac{\pi \mathrm{a}}{4 \mathrm{~b}}\)
2 \(\frac{\pi \mathrm{a}}{2 \mathrm{~b}}\)
3 \(\frac{\pi \mathrm{b}}{4 \mathrm{a}}\)
4 \(\frac{\pi}{2 \mathrm{ab}}\)
Integral Calculus

86262 Evaluate : \(\int \frac{1}{1+3 \sin ^{2} x+8 \cos ^{2} x} d x\)

1 \(\frac{1}{6} \tan ^{-1}(2 \tan x)+C\)
2 \(\tan ^{-1}(2 \tan x)+C\)
3 \(\frac{1}{6} \tan ^{-1}\left(\frac{2 \tan x}{3}\right)+C\)
4 None of these