Integrations and Integration of Functions
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86148 If \(\int \frac{x-\sin x}{1+\cos x} d x=x \tan \left(\frac{x}{2}\right)+p \log \left|\sec \left(\frac{x}{2}\right)\right|+C\) Then \(p\) is equal to

1 -4
2 4
3 2
4 -2
Integral Calculus

86149 If \(\int \frac{\sin x}{\cos x(1+\cos x)} d x=f(x)+c\), then \(f(x)\) is equal to

1 \(\log \left|\frac{1+\cos x}{\cos x}\right|\)
2 \(\log \left|\frac{\cos x}{1+\cos x}\right|\)
3 \(\log \left|\frac{\sin x}{1+\sin x}\right|\)
4 \(\log \left|\frac{1+\sin x}{\sin x}\right|\)
Integral Calculus

86150 \(\int \frac{x^{49} \tan ^{-1}\left(x^{50}\right)}{\left(1+x^{100}\right)} d x=k\left(\tan ^{-1}\left(x^{50}\right)\right)^{2}+c\), then \(k\) is equal to

1 \(\frac{1}{50}\)
2 \(-\frac{1}{50}\)
3 \(\frac{1}{100}\)
4 \(-\frac{1}{100}\)
Integral Calculus

86151 \(\int \frac{1}{(\mathrm{x}+100) \sqrt{\mathrm{x}+99}}=\boldsymbol{f}(\mathrm{x})+\mathrm{c} \Rightarrow f(\mathrm{x})\)

1 \(2(x+100)^{1 / 2}\)
2 \(3(x+100)^{1 / 2}\)
3 \(2 \tan ^{-1}(\sqrt{x+99})\)
4 \(2 \tan ^{-1}(\sqrt{x+100})\)
Integral Calculus

86148 If \(\int \frac{x-\sin x}{1+\cos x} d x=x \tan \left(\frac{x}{2}\right)+p \log \left|\sec \left(\frac{x}{2}\right)\right|+C\) Then \(p\) is equal to

1 -4
2 4
3 2
4 -2
Integral Calculus

86149 If \(\int \frac{\sin x}{\cos x(1+\cos x)} d x=f(x)+c\), then \(f(x)\) is equal to

1 \(\log \left|\frac{1+\cos x}{\cos x}\right|\)
2 \(\log \left|\frac{\cos x}{1+\cos x}\right|\)
3 \(\log \left|\frac{\sin x}{1+\sin x}\right|\)
4 \(\log \left|\frac{1+\sin x}{\sin x}\right|\)
Integral Calculus

86150 \(\int \frac{x^{49} \tan ^{-1}\left(x^{50}\right)}{\left(1+x^{100}\right)} d x=k\left(\tan ^{-1}\left(x^{50}\right)\right)^{2}+c\), then \(k\) is equal to

1 \(\frac{1}{50}\)
2 \(-\frac{1}{50}\)
3 \(\frac{1}{100}\)
4 \(-\frac{1}{100}\)
Integral Calculus

86151 \(\int \frac{1}{(\mathrm{x}+100) \sqrt{\mathrm{x}+99}}=\boldsymbol{f}(\mathrm{x})+\mathrm{c} \Rightarrow f(\mathrm{x})\)

1 \(2(x+100)^{1 / 2}\)
2 \(3(x+100)^{1 / 2}\)
3 \(2 \tan ^{-1}(\sqrt{x+99})\)
4 \(2 \tan ^{-1}(\sqrt{x+100})\)
Integral Calculus

86148 If \(\int \frac{x-\sin x}{1+\cos x} d x=x \tan \left(\frac{x}{2}\right)+p \log \left|\sec \left(\frac{x}{2}\right)\right|+C\) Then \(p\) is equal to

1 -4
2 4
3 2
4 -2
Integral Calculus

86149 If \(\int \frac{\sin x}{\cos x(1+\cos x)} d x=f(x)+c\), then \(f(x)\) is equal to

1 \(\log \left|\frac{1+\cos x}{\cos x}\right|\)
2 \(\log \left|\frac{\cos x}{1+\cos x}\right|\)
3 \(\log \left|\frac{\sin x}{1+\sin x}\right|\)
4 \(\log \left|\frac{1+\sin x}{\sin x}\right|\)
Integral Calculus

86150 \(\int \frac{x^{49} \tan ^{-1}\left(x^{50}\right)}{\left(1+x^{100}\right)} d x=k\left(\tan ^{-1}\left(x^{50}\right)\right)^{2}+c\), then \(k\) is equal to

1 \(\frac{1}{50}\)
2 \(-\frac{1}{50}\)
3 \(\frac{1}{100}\)
4 \(-\frac{1}{100}\)
Integral Calculus

86151 \(\int \frac{1}{(\mathrm{x}+100) \sqrt{\mathrm{x}+99}}=\boldsymbol{f}(\mathrm{x})+\mathrm{c} \Rightarrow f(\mathrm{x})\)

1 \(2(x+100)^{1 / 2}\)
2 \(3(x+100)^{1 / 2}\)
3 \(2 \tan ^{-1}(\sqrt{x+99})\)
4 \(2 \tan ^{-1}(\sqrt{x+100})\)
Integral Calculus

86148 If \(\int \frac{x-\sin x}{1+\cos x} d x=x \tan \left(\frac{x}{2}\right)+p \log \left|\sec \left(\frac{x}{2}\right)\right|+C\) Then \(p\) is equal to

1 -4
2 4
3 2
4 -2
Integral Calculus

86149 If \(\int \frac{\sin x}{\cos x(1+\cos x)} d x=f(x)+c\), then \(f(x)\) is equal to

1 \(\log \left|\frac{1+\cos x}{\cos x}\right|\)
2 \(\log \left|\frac{\cos x}{1+\cos x}\right|\)
3 \(\log \left|\frac{\sin x}{1+\sin x}\right|\)
4 \(\log \left|\frac{1+\sin x}{\sin x}\right|\)
Integral Calculus

86150 \(\int \frac{x^{49} \tan ^{-1}\left(x^{50}\right)}{\left(1+x^{100}\right)} d x=k\left(\tan ^{-1}\left(x^{50}\right)\right)^{2}+c\), then \(k\) is equal to

1 \(\frac{1}{50}\)
2 \(-\frac{1}{50}\)
3 \(\frac{1}{100}\)
4 \(-\frac{1}{100}\)
Integral Calculus

86151 \(\int \frac{1}{(\mathrm{x}+100) \sqrt{\mathrm{x}+99}}=\boldsymbol{f}(\mathrm{x})+\mathrm{c} \Rightarrow f(\mathrm{x})\)

1 \(2(x+100)^{1 / 2}\)
2 \(3(x+100)^{1 / 2}\)
3 \(2 \tan ^{-1}(\sqrt{x+99})\)
4 \(2 \tan ^{-1}(\sqrt{x+100})\)