85744
The maximum value of
\(\left(\cos \alpha_{1}\right) \cdot\left(\cos \alpha_{2}\right) \ldots\left(\cos \alpha_{n}\right)\) Under the
restrictions \(0 \leq \alpha_{1}, \alpha_{2}, \ldots . . \alpha_{n} \leq \frac{\pi}{2}\) and
\(\left(\cot \alpha_{1}\right) \cdot\left(\cot \alpha_{2}\right) \ldots\left(\cot \alpha_{n}\right)=1\) is
85744
The maximum value of
\(\left(\cos \alpha_{1}\right) \cdot\left(\cos \alpha_{2}\right) \ldots\left(\cos \alpha_{n}\right)\) Under the
restrictions \(0 \leq \alpha_{1}, \alpha_{2}, \ldots . . \alpha_{n} \leq \frac{\pi}{2}\) and
\(\left(\cot \alpha_{1}\right) \cdot\left(\cot \alpha_{2}\right) \ldots\left(\cot \alpha_{n}\right)=1\) is
85744
The maximum value of
\(\left(\cos \alpha_{1}\right) \cdot\left(\cos \alpha_{2}\right) \ldots\left(\cos \alpha_{n}\right)\) Under the
restrictions \(0 \leq \alpha_{1}, \alpha_{2}, \ldots . . \alpha_{n} \leq \frac{\pi}{2}\) and
\(\left(\cot \alpha_{1}\right) \cdot\left(\cot \alpha_{2}\right) \ldots\left(\cot \alpha_{n}\right)=1\) is
85744
The maximum value of
\(\left(\cos \alpha_{1}\right) \cdot\left(\cos \alpha_{2}\right) \ldots\left(\cos \alpha_{n}\right)\) Under the
restrictions \(0 \leq \alpha_{1}, \alpha_{2}, \ldots . . \alpha_{n} \leq \frac{\pi}{2}\) and
\(\left(\cot \alpha_{1}\right) \cdot\left(\cot \alpha_{2}\right) \ldots\left(\cot \alpha_{n}\right)=1\) is