Maxima and Minima
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of Derivatives

85716 The minimum value of \(9^{x}+9^{1-x}, x \in R\) is

1 2
2 3
3 6
4 9
Application of Derivatives

85717 The maximum value of \(\frac{\log x}{x}\), if \(x>0\) is

1 1
2 \(2 / \mathrm{e}\)
3 e
4 \(1 / \mathrm{e}\)
Application of Derivatives

85718 The difference between the greatest and the least values of the function \(f(x)=\sin 2 x-x\) on \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) is:

1 \(\pi\)
2 \(\sqrt{3}-\pi / 3\)
3 \(-\sqrt{3}+\pi / 3\)
4 None of these
Application of Derivatives

85719 The least value of the function \(f(x)=a x+b / x, a\) \(>0, b>0, x>0\) is

1 \(\sqrt{\mathrm{ab}}\)
2 \(2 \sqrt{\frac{a}{b}}\)
3 \(2 \sqrt{\frac{\mathrm{b}}{\mathrm{a}}}\)
4 \(2 \sqrt{\mathrm{ab}}\)
Application of Derivatives

85716 The minimum value of \(9^{x}+9^{1-x}, x \in R\) is

1 2
2 3
3 6
4 9
Application of Derivatives

85717 The maximum value of \(\frac{\log x}{x}\), if \(x>0\) is

1 1
2 \(2 / \mathrm{e}\)
3 e
4 \(1 / \mathrm{e}\)
Application of Derivatives

85718 The difference between the greatest and the least values of the function \(f(x)=\sin 2 x-x\) on \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) is:

1 \(\pi\)
2 \(\sqrt{3}-\pi / 3\)
3 \(-\sqrt{3}+\pi / 3\)
4 None of these
Application of Derivatives

85719 The least value of the function \(f(x)=a x+b / x, a\) \(>0, b>0, x>0\) is

1 \(\sqrt{\mathrm{ab}}\)
2 \(2 \sqrt{\frac{a}{b}}\)
3 \(2 \sqrt{\frac{\mathrm{b}}{\mathrm{a}}}\)
4 \(2 \sqrt{\mathrm{ab}}\)
Application of Derivatives

85716 The minimum value of \(9^{x}+9^{1-x}, x \in R\) is

1 2
2 3
3 6
4 9
Application of Derivatives

85717 The maximum value of \(\frac{\log x}{x}\), if \(x>0\) is

1 1
2 \(2 / \mathrm{e}\)
3 e
4 \(1 / \mathrm{e}\)
Application of Derivatives

85718 The difference between the greatest and the least values of the function \(f(x)=\sin 2 x-x\) on \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) is:

1 \(\pi\)
2 \(\sqrt{3}-\pi / 3\)
3 \(-\sqrt{3}+\pi / 3\)
4 None of these
Application of Derivatives

85719 The least value of the function \(f(x)=a x+b / x, a\) \(>0, b>0, x>0\) is

1 \(\sqrt{\mathrm{ab}}\)
2 \(2 \sqrt{\frac{a}{b}}\)
3 \(2 \sqrt{\frac{\mathrm{b}}{\mathrm{a}}}\)
4 \(2 \sqrt{\mathrm{ab}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of Derivatives

85716 The minimum value of \(9^{x}+9^{1-x}, x \in R\) is

1 2
2 3
3 6
4 9
Application of Derivatives

85717 The maximum value of \(\frac{\log x}{x}\), if \(x>0\) is

1 1
2 \(2 / \mathrm{e}\)
3 e
4 \(1 / \mathrm{e}\)
Application of Derivatives

85718 The difference between the greatest and the least values of the function \(f(x)=\sin 2 x-x\) on \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) is:

1 \(\pi\)
2 \(\sqrt{3}-\pi / 3\)
3 \(-\sqrt{3}+\pi / 3\)
4 None of these
Application of Derivatives

85719 The least value of the function \(f(x)=a x+b / x, a\) \(>0, b>0, x>0\) is

1 \(\sqrt{\mathrm{ab}}\)
2 \(2 \sqrt{\frac{a}{b}}\)
3 \(2 \sqrt{\frac{\mathrm{b}}{\mathrm{a}}}\)
4 \(2 \sqrt{\mathrm{ab}}\)