Maxima and Minima
Application of Derivatives

85650 The point of inflection of the function
\(y=\int_{0}^{x}\left(t^{2}-3 t+2\right) d t\) is

1 \(\left(\frac{3}{2}, \frac{3}{4}\right)\)
2 \(\left(-\frac{3}{2},-\frac{3}{4}\right)\)
3 \(\left(-\frac{1}{2},-\frac{3}{2}\right)\)
4 \(\left(\frac{1}{2}, \frac{3}{2}\right)\)
Application of Derivatives

85651 If \(f(\theta)=2\left(\sec ^{2} \theta+\cos ^{2} \theta\right)\), then its value always

1 \(4>\mathrm{f}(\theta)>2\)
2 \(\mathrm{f}(\theta) \geq 4\)
3 \(f(\theta)\lt 2\)
4 \(\mathrm{f}(\theta)=2\)
Application of Derivatives

85652 If \(f(x)=\frac{80}{3 \mathrm{x}^{4}+8 \mathrm{x}^{3}-18 \mathrm{x}^{2}+60}\), then the points of local maxima for the function \(f(x)\) are

1 1,3
2 \(-3,1\)
3 \(-1,3\)
4 \(-1,-3\)
Application of Derivatives

85653 The adjacent sides of a rectangle with given parameter as \(200 \mathrm{~cm}\) and enclosing minimum area are

1 \(20 \mathrm{~cm}\) and \(80 \mathrm{~cm}\)
2 \(40 \mathrm{~cm}\) and \(60 \mathrm{~cm}\)
3 \(50 \mathrm{~cm}\) and \(50 \mathrm{~cm}\)
4 \(30 \mathrm{~cm}\) and \(70 \mathrm{~cm}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of Derivatives

85650 The point of inflection of the function
\(y=\int_{0}^{x}\left(t^{2}-3 t+2\right) d t\) is

1 \(\left(\frac{3}{2}, \frac{3}{4}\right)\)
2 \(\left(-\frac{3}{2},-\frac{3}{4}\right)\)
3 \(\left(-\frac{1}{2},-\frac{3}{2}\right)\)
4 \(\left(\frac{1}{2}, \frac{3}{2}\right)\)
Application of Derivatives

85651 If \(f(\theta)=2\left(\sec ^{2} \theta+\cos ^{2} \theta\right)\), then its value always

1 \(4>\mathrm{f}(\theta)>2\)
2 \(\mathrm{f}(\theta) \geq 4\)
3 \(f(\theta)\lt 2\)
4 \(\mathrm{f}(\theta)=2\)
Application of Derivatives

85652 If \(f(x)=\frac{80}{3 \mathrm{x}^{4}+8 \mathrm{x}^{3}-18 \mathrm{x}^{2}+60}\), then the points of local maxima for the function \(f(x)\) are

1 1,3
2 \(-3,1\)
3 \(-1,3\)
4 \(-1,-3\)
Application of Derivatives

85653 The adjacent sides of a rectangle with given parameter as \(200 \mathrm{~cm}\) and enclosing minimum area are

1 \(20 \mathrm{~cm}\) and \(80 \mathrm{~cm}\)
2 \(40 \mathrm{~cm}\) and \(60 \mathrm{~cm}\)
3 \(50 \mathrm{~cm}\) and \(50 \mathrm{~cm}\)
4 \(30 \mathrm{~cm}\) and \(70 \mathrm{~cm}\)
Application of Derivatives

85650 The point of inflection of the function
\(y=\int_{0}^{x}\left(t^{2}-3 t+2\right) d t\) is

1 \(\left(\frac{3}{2}, \frac{3}{4}\right)\)
2 \(\left(-\frac{3}{2},-\frac{3}{4}\right)\)
3 \(\left(-\frac{1}{2},-\frac{3}{2}\right)\)
4 \(\left(\frac{1}{2}, \frac{3}{2}\right)\)
Application of Derivatives

85651 If \(f(\theta)=2\left(\sec ^{2} \theta+\cos ^{2} \theta\right)\), then its value always

1 \(4>\mathrm{f}(\theta)>2\)
2 \(\mathrm{f}(\theta) \geq 4\)
3 \(f(\theta)\lt 2\)
4 \(\mathrm{f}(\theta)=2\)
Application of Derivatives

85652 If \(f(x)=\frac{80}{3 \mathrm{x}^{4}+8 \mathrm{x}^{3}-18 \mathrm{x}^{2}+60}\), then the points of local maxima for the function \(f(x)\) are

1 1,3
2 \(-3,1\)
3 \(-1,3\)
4 \(-1,-3\)
Application of Derivatives

85653 The adjacent sides of a rectangle with given parameter as \(200 \mathrm{~cm}\) and enclosing minimum area are

1 \(20 \mathrm{~cm}\) and \(80 \mathrm{~cm}\)
2 \(40 \mathrm{~cm}\) and \(60 \mathrm{~cm}\)
3 \(50 \mathrm{~cm}\) and \(50 \mathrm{~cm}\)
4 \(30 \mathrm{~cm}\) and \(70 \mathrm{~cm}\)
Application of Derivatives

85650 The point of inflection of the function
\(y=\int_{0}^{x}\left(t^{2}-3 t+2\right) d t\) is

1 \(\left(\frac{3}{2}, \frac{3}{4}\right)\)
2 \(\left(-\frac{3}{2},-\frac{3}{4}\right)\)
3 \(\left(-\frac{1}{2},-\frac{3}{2}\right)\)
4 \(\left(\frac{1}{2}, \frac{3}{2}\right)\)
Application of Derivatives

85651 If \(f(\theta)=2\left(\sec ^{2} \theta+\cos ^{2} \theta\right)\), then its value always

1 \(4>\mathrm{f}(\theta)>2\)
2 \(\mathrm{f}(\theta) \geq 4\)
3 \(f(\theta)\lt 2\)
4 \(\mathrm{f}(\theta)=2\)
Application of Derivatives

85652 If \(f(x)=\frac{80}{3 \mathrm{x}^{4}+8 \mathrm{x}^{3}-18 \mathrm{x}^{2}+60}\), then the points of local maxima for the function \(f(x)\) are

1 1,3
2 \(-3,1\)
3 \(-1,3\)
4 \(-1,-3\)
Application of Derivatives

85653 The adjacent sides of a rectangle with given parameter as \(200 \mathrm{~cm}\) and enclosing minimum area are

1 \(20 \mathrm{~cm}\) and \(80 \mathrm{~cm}\)
2 \(40 \mathrm{~cm}\) and \(60 \mathrm{~cm}\)
3 \(50 \mathrm{~cm}\) and \(50 \mathrm{~cm}\)
4 \(30 \mathrm{~cm}\) and \(70 \mathrm{~cm}\)