Maxima and Minima
Application of Derivatives

85645 The function \(f(x)=x^{3}+a x^{2}+b x+c, a^{2} \leq 3 b\) has

1 one maximum value
2 one minimum value
3 no extreme value
4 one maximum and one minimum value
Application of Derivatives

85646 The function \(f(x)=x^{2} e^{-2 x}, x>0\). Then the maximum value of \(f(x)\) is

1 \(\frac{1}{\mathrm{e}}\)
2 \(\frac{1}{2 \mathrm{e}}\)
3 \(\frac{1}{\mathrm{e}^{2}}\)
4 \(\frac{4}{\mathrm{e}^{4}}\)
Application of Derivatives

85647 The maximum value of \(\left(\frac{1}{x}\right)^{x}\) i

1 e
2 \(e^{e}\)
3 \(\mathrm{e}^{\frac{1}{\mathrm{e}}}\)
4 \(\left(\frac{1}{\mathrm{e}}\right)^{\frac{1}{e}}\)
Application of Derivatives

85648 The values of \(a\) and \(b\) for which the function \(y=a \log _{e} x+b x^{2}+x\), has extremum at the points \(x_{1}=1\) and \(x_{2}=2\) are

1 \(\mathrm{a}=\frac{2}{3}, \mathrm{~b}=-\frac{1}{6}\)
2 \(\mathrm{a}=-\frac{2}{3}, \mathrm{~b}=-\frac{1}{6}\)
3 \(\mathrm{a}=-\frac{2}{3}, \mathrm{~b}=\frac{1}{6}\)
4 \(\mathrm{a}=-\frac{1}{3}, \mathrm{~b}=-\frac{1}{6}\)
Application of Derivatives

85649 The maximum value of the function \(y=2 \tan x-\tan ^{2} x \operatorname{over}\left[0, \frac{\pi}{2}\right]\) is

1 \(\infty\)
2 1
3 3
4 2
Application of Derivatives

85645 The function \(f(x)=x^{3}+a x^{2}+b x+c, a^{2} \leq 3 b\) has

1 one maximum value
2 one minimum value
3 no extreme value
4 one maximum and one minimum value
Application of Derivatives

85646 The function \(f(x)=x^{2} e^{-2 x}, x>0\). Then the maximum value of \(f(x)\) is

1 \(\frac{1}{\mathrm{e}}\)
2 \(\frac{1}{2 \mathrm{e}}\)
3 \(\frac{1}{\mathrm{e}^{2}}\)
4 \(\frac{4}{\mathrm{e}^{4}}\)
Application of Derivatives

85647 The maximum value of \(\left(\frac{1}{x}\right)^{x}\) i

1 e
2 \(e^{e}\)
3 \(\mathrm{e}^{\frac{1}{\mathrm{e}}}\)
4 \(\left(\frac{1}{\mathrm{e}}\right)^{\frac{1}{e}}\)
Application of Derivatives

85648 The values of \(a\) and \(b\) for which the function \(y=a \log _{e} x+b x^{2}+x\), has extremum at the points \(x_{1}=1\) and \(x_{2}=2\) are

1 \(\mathrm{a}=\frac{2}{3}, \mathrm{~b}=-\frac{1}{6}\)
2 \(\mathrm{a}=-\frac{2}{3}, \mathrm{~b}=-\frac{1}{6}\)
3 \(\mathrm{a}=-\frac{2}{3}, \mathrm{~b}=\frac{1}{6}\)
4 \(\mathrm{a}=-\frac{1}{3}, \mathrm{~b}=-\frac{1}{6}\)
Application of Derivatives

85649 The maximum value of the function \(y=2 \tan x-\tan ^{2} x \operatorname{over}\left[0, \frac{\pi}{2}\right]\) is

1 \(\infty\)
2 1
3 3
4 2
Application of Derivatives

85645 The function \(f(x)=x^{3}+a x^{2}+b x+c, a^{2} \leq 3 b\) has

1 one maximum value
2 one minimum value
3 no extreme value
4 one maximum and one minimum value
Application of Derivatives

85646 The function \(f(x)=x^{2} e^{-2 x}, x>0\). Then the maximum value of \(f(x)\) is

1 \(\frac{1}{\mathrm{e}}\)
2 \(\frac{1}{2 \mathrm{e}}\)
3 \(\frac{1}{\mathrm{e}^{2}}\)
4 \(\frac{4}{\mathrm{e}^{4}}\)
Application of Derivatives

85647 The maximum value of \(\left(\frac{1}{x}\right)^{x}\) i

1 e
2 \(e^{e}\)
3 \(\mathrm{e}^{\frac{1}{\mathrm{e}}}\)
4 \(\left(\frac{1}{\mathrm{e}}\right)^{\frac{1}{e}}\)
Application of Derivatives

85648 The values of \(a\) and \(b\) for which the function \(y=a \log _{e} x+b x^{2}+x\), has extremum at the points \(x_{1}=1\) and \(x_{2}=2\) are

1 \(\mathrm{a}=\frac{2}{3}, \mathrm{~b}=-\frac{1}{6}\)
2 \(\mathrm{a}=-\frac{2}{3}, \mathrm{~b}=-\frac{1}{6}\)
3 \(\mathrm{a}=-\frac{2}{3}, \mathrm{~b}=\frac{1}{6}\)
4 \(\mathrm{a}=-\frac{1}{3}, \mathrm{~b}=-\frac{1}{6}\)
Application of Derivatives

85649 The maximum value of the function \(y=2 \tan x-\tan ^{2} x \operatorname{over}\left[0, \frac{\pi}{2}\right]\) is

1 \(\infty\)
2 1
3 3
4 2
Application of Derivatives

85645 The function \(f(x)=x^{3}+a x^{2}+b x+c, a^{2} \leq 3 b\) has

1 one maximum value
2 one minimum value
3 no extreme value
4 one maximum and one minimum value
Application of Derivatives

85646 The function \(f(x)=x^{2} e^{-2 x}, x>0\). Then the maximum value of \(f(x)\) is

1 \(\frac{1}{\mathrm{e}}\)
2 \(\frac{1}{2 \mathrm{e}}\)
3 \(\frac{1}{\mathrm{e}^{2}}\)
4 \(\frac{4}{\mathrm{e}^{4}}\)
Application of Derivatives

85647 The maximum value of \(\left(\frac{1}{x}\right)^{x}\) i

1 e
2 \(e^{e}\)
3 \(\mathrm{e}^{\frac{1}{\mathrm{e}}}\)
4 \(\left(\frac{1}{\mathrm{e}}\right)^{\frac{1}{e}}\)
Application of Derivatives

85648 The values of \(a\) and \(b\) for which the function \(y=a \log _{e} x+b x^{2}+x\), has extremum at the points \(x_{1}=1\) and \(x_{2}=2\) are

1 \(\mathrm{a}=\frac{2}{3}, \mathrm{~b}=-\frac{1}{6}\)
2 \(\mathrm{a}=-\frac{2}{3}, \mathrm{~b}=-\frac{1}{6}\)
3 \(\mathrm{a}=-\frac{2}{3}, \mathrm{~b}=\frac{1}{6}\)
4 \(\mathrm{a}=-\frac{1}{3}, \mathrm{~b}=-\frac{1}{6}\)
Application of Derivatives

85649 The maximum value of the function \(y=2 \tan x-\tan ^{2} x \operatorname{over}\left[0, \frac{\pi}{2}\right]\) is

1 \(\infty\)
2 1
3 3
4 2
Application of Derivatives

85645 The function \(f(x)=x^{3}+a x^{2}+b x+c, a^{2} \leq 3 b\) has

1 one maximum value
2 one minimum value
3 no extreme value
4 one maximum and one minimum value
Application of Derivatives

85646 The function \(f(x)=x^{2} e^{-2 x}, x>0\). Then the maximum value of \(f(x)\) is

1 \(\frac{1}{\mathrm{e}}\)
2 \(\frac{1}{2 \mathrm{e}}\)
3 \(\frac{1}{\mathrm{e}^{2}}\)
4 \(\frac{4}{\mathrm{e}^{4}}\)
Application of Derivatives

85647 The maximum value of \(\left(\frac{1}{x}\right)^{x}\) i

1 e
2 \(e^{e}\)
3 \(\mathrm{e}^{\frac{1}{\mathrm{e}}}\)
4 \(\left(\frac{1}{\mathrm{e}}\right)^{\frac{1}{e}}\)
Application of Derivatives

85648 The values of \(a\) and \(b\) for which the function \(y=a \log _{e} x+b x^{2}+x\), has extremum at the points \(x_{1}=1\) and \(x_{2}=2\) are

1 \(\mathrm{a}=\frac{2}{3}, \mathrm{~b}=-\frac{1}{6}\)
2 \(\mathrm{a}=-\frac{2}{3}, \mathrm{~b}=-\frac{1}{6}\)
3 \(\mathrm{a}=-\frac{2}{3}, \mathrm{~b}=\frac{1}{6}\)
4 \(\mathrm{a}=-\frac{1}{3}, \mathrm{~b}=-\frac{1}{6}\)
Application of Derivatives

85649 The maximum value of the function \(y=2 \tan x-\tan ^{2} x \operatorname{over}\left[0, \frac{\pi}{2}\right]\) is

1 \(\infty\)
2 1
3 3
4 2