Maxima and Minima
Application of Derivatives

85618 The altitude for a right circular cone of minimum volume circumscribed about a sphere of radius \(r\) is

1 \(2 \mathrm{r}\)
2 \(3 \mathrm{r}\)
3 \(5 \mathrm{r}\)
4 \(4 \mathrm{r}\)
Application of Derivatives

85621 The largest value of \(y=2 x^{3}-3 x^{2}-12 x+5\) for \(-2 \leq x \leq 2\) occurs at \(x\) is equal to

1 -2
2 -1
3 2
4 4
Application of Derivatives

85622 The function \(f(x)=2 x^{3}-3 x^{2}-12 x+4\), has

1 two points of local maximum
2 two points of local minimum
3 one maxima and one minima
4 no maxima or minima
Application of Derivatives

85623 If \(a^{2} x^{4}+b^{2} y^{4}=c^{4}\), then the maximum value of xy i

1 \(\frac{\mathrm{c}}{\sqrt{\mathrm{ab}}}\)
2 \(\frac{c^{2}}{2 \sqrt{a b}}\)
3 \(\frac{\mathrm{c}}{2 \sqrt{\mathrm{ab}}}\)
4 \(\frac{\mathrm{c}^{2}}{\sqrt{2 \mathrm{ab}}}\)
Application of Derivatives

85618 The altitude for a right circular cone of minimum volume circumscribed about a sphere of radius \(r\) is

1 \(2 \mathrm{r}\)
2 \(3 \mathrm{r}\)
3 \(5 \mathrm{r}\)
4 \(4 \mathrm{r}\)
Application of Derivatives

85621 The largest value of \(y=2 x^{3}-3 x^{2}-12 x+5\) for \(-2 \leq x \leq 2\) occurs at \(x\) is equal to

1 -2
2 -1
3 2
4 4
Application of Derivatives

85622 The function \(f(x)=2 x^{3}-3 x^{2}-12 x+4\), has

1 two points of local maximum
2 two points of local minimum
3 one maxima and one minima
4 no maxima or minima
Application of Derivatives

85623 If \(a^{2} x^{4}+b^{2} y^{4}=c^{4}\), then the maximum value of xy i

1 \(\frac{\mathrm{c}}{\sqrt{\mathrm{ab}}}\)
2 \(\frac{c^{2}}{2 \sqrt{a b}}\)
3 \(\frac{\mathrm{c}}{2 \sqrt{\mathrm{ab}}}\)
4 \(\frac{\mathrm{c}^{2}}{\sqrt{2 \mathrm{ab}}}\)
Application of Derivatives

85618 The altitude for a right circular cone of minimum volume circumscribed about a sphere of radius \(r\) is

1 \(2 \mathrm{r}\)
2 \(3 \mathrm{r}\)
3 \(5 \mathrm{r}\)
4 \(4 \mathrm{r}\)
Application of Derivatives

85621 The largest value of \(y=2 x^{3}-3 x^{2}-12 x+5\) for \(-2 \leq x \leq 2\) occurs at \(x\) is equal to

1 -2
2 -1
3 2
4 4
Application of Derivatives

85622 The function \(f(x)=2 x^{3}-3 x^{2}-12 x+4\), has

1 two points of local maximum
2 two points of local minimum
3 one maxima and one minima
4 no maxima or minima
Application of Derivatives

85623 If \(a^{2} x^{4}+b^{2} y^{4}=c^{4}\), then the maximum value of xy i

1 \(\frac{\mathrm{c}}{\sqrt{\mathrm{ab}}}\)
2 \(\frac{c^{2}}{2 \sqrt{a b}}\)
3 \(\frac{\mathrm{c}}{2 \sqrt{\mathrm{ab}}}\)
4 \(\frac{\mathrm{c}^{2}}{\sqrt{2 \mathrm{ab}}}\)
Application of Derivatives

85618 The altitude for a right circular cone of minimum volume circumscribed about a sphere of radius \(r\) is

1 \(2 \mathrm{r}\)
2 \(3 \mathrm{r}\)
3 \(5 \mathrm{r}\)
4 \(4 \mathrm{r}\)
Application of Derivatives

85621 The largest value of \(y=2 x^{3}-3 x^{2}-12 x+5\) for \(-2 \leq x \leq 2\) occurs at \(x\) is equal to

1 -2
2 -1
3 2
4 4
Application of Derivatives

85622 The function \(f(x)=2 x^{3}-3 x^{2}-12 x+4\), has

1 two points of local maximum
2 two points of local minimum
3 one maxima and one minima
4 no maxima or minima
Application of Derivatives

85623 If \(a^{2} x^{4}+b^{2} y^{4}=c^{4}\), then the maximum value of xy i

1 \(\frac{\mathrm{c}}{\sqrt{\mathrm{ab}}}\)
2 \(\frac{c^{2}}{2 \sqrt{a b}}\)
3 \(\frac{\mathrm{c}}{2 \sqrt{\mathrm{ab}}}\)
4 \(\frac{\mathrm{c}^{2}}{\sqrt{2 \mathrm{ab}}}\)