85592 For all positive value of x and y, the value of(1+x+x2)(1+y+y2)xy is:
(C) : Given,For all positive value of x and y We have,(1+x+x2)(1+y+y2)xyWe can write as,1+x+x2xy=1xy+1y+xyWe know that,A.M ≥ G.M=1xy+1y+xy≥1xy×1y×xy3=1xy+1y+xy≥3(1y3)131xy+1y+xy≥3ySimilarly,1+y+y2xy=1xy+1x+yx1xy+1x+yx3≥(1xy×1x×yx)131xy+1x+yx≥3xOn multiplying equation (i) and (ii) we get-(1xy+1y+xy)(1xy+1x+yx)≥9xy(1+x+x2)(1+y+y2)(xy)2≥9xy(1+x+x2)(1+y+y2)(xy)≥9
85593 The maximum of the function 3cosx−4sinx is:
(D) : Given,f(x)=3cosx−4sinxWe know that−a2+b2≤acosx+bsinx≤a2+b2a=3 and b=−4For maximum3cosx−4sinx≤(3)2+(−4)23cosx−4sinx≤253cosx−4sinx≤5
85594 The maximum slope of the curvey=−x3+3x2+2x−27i
(C) : Given curve,y=−x2+3x2+2x−27On differentiating both sides w.r.t x we get-dydx=−3x2+6x+2For maximum slopedydx=0Slope (m)=−3x2+6x+2=0d(m)dx=−6x+6⇒d2(m)dx2=−6For maximum,d(m)dx=0−6x+6=0x=1Slope (m)=−3x2+6x+2Value of maximum slope at x=1m=−3(1)2+6(1)+2=−3+6+2 mmax=5
85595 The minimum value of f(x)=a2cos2x+b2sin2x if a2>b2, is
(A) : Given,f(x)=a2cos2x+b2sin2xOn differentiating both sides w.r.t. x, we get-f′(x)=a22cosx⋅(−sinx)+b22sinxcosx=−a2sin2x+b2sin2x=(b2−a2)sin2xFor minimum f′(x)=0(b2−a2)sin2x=0sin2x=02x=0x=0f(0)=a2(1)2+b2(0)f(0)=a2( maxima )Again on differentiating both sides w.r.t. x, we get-f′′(x)=(b2−a2)2cos2xf′′(0)=(b2−a2)2<0f(π2)=a2(0)+b2(1)f(π2)=b2( minima )f′′(π2)=2(a2−b2)>0f(π2)=b2Hence, minimum value is b2