Tangent and Normal
Application of Derivatives

85393 The approximate value of (1.002)300 using differentiation is

1 1.8
2 1.6
3 1.2
4 1.4
Application of Derivatives

85394 Using differentiation, the approximate value of sin46,
Given that 10=0.0175, is

1 0.07194
2 1.01752
3 0.7194
4 0.01752
Application of Derivatives

85395 The slope of normal to the curve x=t and
y=t1t at t=4 is 
 (a) 174 (b) 174 (c) 417 (d) 417

1 174
2 174
3 417
4 417
Application of Derivatives

85393 The approximate value of (1.002)300 using differentiation is

1 1.8
2 1.6
3 1.2
4 1.4
Application of Derivatives

85394 Using differentiation, the approximate value of sin46,
Given that 10=0.0175, is

1 0.07194
2 1.01752
3 0.7194
4 0.01752
Application of Derivatives

85395 The slope of normal to the curve x=t and
y=t1t at t=4 is 
 (a) 174 (b) 174 (c) 417 (d) 417

1 174
2 174
3 417
4 417
Application of Derivatives

85396 The equation of normal to the curve y=logex at the point P(1,0) is

1 x+y=1
2 2x+y=2
3 xy=1
4 x2y=1
Application of Derivatives

85393 The approximate value of (1.002)300 using differentiation is

1 1.8
2 1.6
3 1.2
4 1.4
Application of Derivatives

85394 Using differentiation, the approximate value of sin46,
Given that 10=0.0175, is

1 0.07194
2 1.01752
3 0.7194
4 0.01752
Application of Derivatives

85395 The slope of normal to the curve x=t and
y=t1t at t=4 is 
 (a) 174 (b) 174 (c) 417 (d) 417

1 174
2 174
3 417
4 417
Application of Derivatives

85396 The equation of normal to the curve y=logex at the point P(1,0) is

1 x+y=1
2 2x+y=2
3 xy=1
4 x2y=1
Application of Derivatives

85393 The approximate value of (1.002)300 using differentiation is

1 1.8
2 1.6
3 1.2
4 1.4
Application of Derivatives

85394 Using differentiation, the approximate value of sin46,
Given that 10=0.0175, is

1 0.07194
2 1.01752
3 0.7194
4 0.01752
Application of Derivatives

85395 The slope of normal to the curve x=t and
y=t1t at t=4 is 
 (a) 174 (b) 174 (c) 417 (d) 417

1 174
2 174
3 417
4 417
Application of Derivatives

85396 The equation of normal to the curve y=logex at the point P(1,0) is

1 x+y=1
2 2x+y=2
3 xy=1
4 x2y=1