Formation of Quadratic Equation with given Roots
Complex Numbers and Quadratic Equation

118468 If \(\alpha, \beta\) are the roots of the quadratic equation \(x^2+a x+b=0,(b \neq 0)\), then the quadratic equation whose roots are \(\alpha-\frac{1}{\beta}, \beta-\frac{1}{\alpha}\), is

1 \(a x^2+a(b-1) x+(a-1)^2=0\)
2 \(b x^2+a(b-1) x+(b-1)^2=0\)
3 \(x^2+a x+b v=0\)
4 \(a b x^2+b x+a=0\)
Complex Numbers and Quadratic Equation

118469 The quadratic equation whose sum of the roots is 11 and sum of squares of the roots is 61 is

1 \(x^2+11 x-30=0\)
2 \(x^2+11 x+30=0\)
3 \(x^2-11 x-30=0\)
4 \(x^2-11 x+30=0\)
Complex Numbers and Quadratic Equation

118470 Let \(p, q \in R\). If \(2-\sqrt{3}\) is a root of the quadratic equation, \(x^2+\mathbf{p}+\mathbf{q}=\mathbf{0}\), then

1 \(q^2-4 p-16=0\)
2 \(p^2-4 q-12=0\)
3 \(\mathrm{p}^2-4 \mathrm{p}+12=0\)
4 \(q^2+4 p+14=0\)
Complex Numbers and Quadratic Equation

118471 The quardratic equation whose roots are \(\frac{1}{3+\sqrt{2}}\) and \(\frac{1}{3-\sqrt{2}}\), will be

1 \(7 x^2-6 x+1=0\)
2 \(6 x^2-7 x+1=0\)
3 \(x^2-6 x+7=0\)
4 \(x^2-7 x+6=0\)
Complex Numbers and Quadratic Equation

118472 If \(\alpha, \beta\) are the roots of \(a x^2+b x+c=0\), then the quadratic equation whose roots are \(\sqrt{5} \alpha, \sqrt{5} \beta\) is

1 \(a x^2+\sqrt{5} b x+5 c=0\)
2 \(a x^2+\sqrt{5} \mathrm{bx}+\sqrt{5} \mathrm{c}=0\)
3 \(a x^2+5 b x+\sqrt{5} c=0\)
4 \(a x^2+5 \mathrm{bx}+5 \mathrm{c}=0\)
Complex Numbers and Quadratic Equation

118468 If \(\alpha, \beta\) are the roots of the quadratic equation \(x^2+a x+b=0,(b \neq 0)\), then the quadratic equation whose roots are \(\alpha-\frac{1}{\beta}, \beta-\frac{1}{\alpha}\), is

1 \(a x^2+a(b-1) x+(a-1)^2=0\)
2 \(b x^2+a(b-1) x+(b-1)^2=0\)
3 \(x^2+a x+b v=0\)
4 \(a b x^2+b x+a=0\)
Complex Numbers and Quadratic Equation

118469 The quadratic equation whose sum of the roots is 11 and sum of squares of the roots is 61 is

1 \(x^2+11 x-30=0\)
2 \(x^2+11 x+30=0\)
3 \(x^2-11 x-30=0\)
4 \(x^2-11 x+30=0\)
Complex Numbers and Quadratic Equation

118470 Let \(p, q \in R\). If \(2-\sqrt{3}\) is a root of the quadratic equation, \(x^2+\mathbf{p}+\mathbf{q}=\mathbf{0}\), then

1 \(q^2-4 p-16=0\)
2 \(p^2-4 q-12=0\)
3 \(\mathrm{p}^2-4 \mathrm{p}+12=0\)
4 \(q^2+4 p+14=0\)
Complex Numbers and Quadratic Equation

118471 The quardratic equation whose roots are \(\frac{1}{3+\sqrt{2}}\) and \(\frac{1}{3-\sqrt{2}}\), will be

1 \(7 x^2-6 x+1=0\)
2 \(6 x^2-7 x+1=0\)
3 \(x^2-6 x+7=0\)
4 \(x^2-7 x+6=0\)
Complex Numbers and Quadratic Equation

118472 If \(\alpha, \beta\) are the roots of \(a x^2+b x+c=0\), then the quadratic equation whose roots are \(\sqrt{5} \alpha, \sqrt{5} \beta\) is

1 \(a x^2+\sqrt{5} b x+5 c=0\)
2 \(a x^2+\sqrt{5} \mathrm{bx}+\sqrt{5} \mathrm{c}=0\)
3 \(a x^2+5 b x+\sqrt{5} c=0\)
4 \(a x^2+5 \mathrm{bx}+5 \mathrm{c}=0\)
Complex Numbers and Quadratic Equation

118468 If \(\alpha, \beta\) are the roots of the quadratic equation \(x^2+a x+b=0,(b \neq 0)\), then the quadratic equation whose roots are \(\alpha-\frac{1}{\beta}, \beta-\frac{1}{\alpha}\), is

1 \(a x^2+a(b-1) x+(a-1)^2=0\)
2 \(b x^2+a(b-1) x+(b-1)^2=0\)
3 \(x^2+a x+b v=0\)
4 \(a b x^2+b x+a=0\)
Complex Numbers and Quadratic Equation

118469 The quadratic equation whose sum of the roots is 11 and sum of squares of the roots is 61 is

1 \(x^2+11 x-30=0\)
2 \(x^2+11 x+30=0\)
3 \(x^2-11 x-30=0\)
4 \(x^2-11 x+30=0\)
Complex Numbers and Quadratic Equation

118470 Let \(p, q \in R\). If \(2-\sqrt{3}\) is a root of the quadratic equation, \(x^2+\mathbf{p}+\mathbf{q}=\mathbf{0}\), then

1 \(q^2-4 p-16=0\)
2 \(p^2-4 q-12=0\)
3 \(\mathrm{p}^2-4 \mathrm{p}+12=0\)
4 \(q^2+4 p+14=0\)
Complex Numbers and Quadratic Equation

118471 The quardratic equation whose roots are \(\frac{1}{3+\sqrt{2}}\) and \(\frac{1}{3-\sqrt{2}}\), will be

1 \(7 x^2-6 x+1=0\)
2 \(6 x^2-7 x+1=0\)
3 \(x^2-6 x+7=0\)
4 \(x^2-7 x+6=0\)
Complex Numbers and Quadratic Equation

118472 If \(\alpha, \beta\) are the roots of \(a x^2+b x+c=0\), then the quadratic equation whose roots are \(\sqrt{5} \alpha, \sqrt{5} \beta\) is

1 \(a x^2+\sqrt{5} b x+5 c=0\)
2 \(a x^2+\sqrt{5} \mathrm{bx}+\sqrt{5} \mathrm{c}=0\)
3 \(a x^2+5 b x+\sqrt{5} c=0\)
4 \(a x^2+5 \mathrm{bx}+5 \mathrm{c}=0\)
Complex Numbers and Quadratic Equation

118468 If \(\alpha, \beta\) are the roots of the quadratic equation \(x^2+a x+b=0,(b \neq 0)\), then the quadratic equation whose roots are \(\alpha-\frac{1}{\beta}, \beta-\frac{1}{\alpha}\), is

1 \(a x^2+a(b-1) x+(a-1)^2=0\)
2 \(b x^2+a(b-1) x+(b-1)^2=0\)
3 \(x^2+a x+b v=0\)
4 \(a b x^2+b x+a=0\)
Complex Numbers and Quadratic Equation

118469 The quadratic equation whose sum of the roots is 11 and sum of squares of the roots is 61 is

1 \(x^2+11 x-30=0\)
2 \(x^2+11 x+30=0\)
3 \(x^2-11 x-30=0\)
4 \(x^2-11 x+30=0\)
Complex Numbers and Quadratic Equation

118470 Let \(p, q \in R\). If \(2-\sqrt{3}\) is a root of the quadratic equation, \(x^2+\mathbf{p}+\mathbf{q}=\mathbf{0}\), then

1 \(q^2-4 p-16=0\)
2 \(p^2-4 q-12=0\)
3 \(\mathrm{p}^2-4 \mathrm{p}+12=0\)
4 \(q^2+4 p+14=0\)
Complex Numbers and Quadratic Equation

118471 The quardratic equation whose roots are \(\frac{1}{3+\sqrt{2}}\) and \(\frac{1}{3-\sqrt{2}}\), will be

1 \(7 x^2-6 x+1=0\)
2 \(6 x^2-7 x+1=0\)
3 \(x^2-6 x+7=0\)
4 \(x^2-7 x+6=0\)
Complex Numbers and Quadratic Equation

118472 If \(\alpha, \beta\) are the roots of \(a x^2+b x+c=0\), then the quadratic equation whose roots are \(\sqrt{5} \alpha, \sqrt{5} \beta\) is

1 \(a x^2+\sqrt{5} b x+5 c=0\)
2 \(a x^2+\sqrt{5} \mathrm{bx}+\sqrt{5} \mathrm{c}=0\)
3 \(a x^2+5 b x+\sqrt{5} c=0\)
4 \(a x^2+5 \mathrm{bx}+5 \mathrm{c}=0\)
Complex Numbers and Quadratic Equation

118468 If \(\alpha, \beta\) are the roots of the quadratic equation \(x^2+a x+b=0,(b \neq 0)\), then the quadratic equation whose roots are \(\alpha-\frac{1}{\beta}, \beta-\frac{1}{\alpha}\), is

1 \(a x^2+a(b-1) x+(a-1)^2=0\)
2 \(b x^2+a(b-1) x+(b-1)^2=0\)
3 \(x^2+a x+b v=0\)
4 \(a b x^2+b x+a=0\)
Complex Numbers and Quadratic Equation

118469 The quadratic equation whose sum of the roots is 11 and sum of squares of the roots is 61 is

1 \(x^2+11 x-30=0\)
2 \(x^2+11 x+30=0\)
3 \(x^2-11 x-30=0\)
4 \(x^2-11 x+30=0\)
Complex Numbers and Quadratic Equation

118470 Let \(p, q \in R\). If \(2-\sqrt{3}\) is a root of the quadratic equation, \(x^2+\mathbf{p}+\mathbf{q}=\mathbf{0}\), then

1 \(q^2-4 p-16=0\)
2 \(p^2-4 q-12=0\)
3 \(\mathrm{p}^2-4 \mathrm{p}+12=0\)
4 \(q^2+4 p+14=0\)
Complex Numbers and Quadratic Equation

118471 The quardratic equation whose roots are \(\frac{1}{3+\sqrt{2}}\) and \(\frac{1}{3-\sqrt{2}}\), will be

1 \(7 x^2-6 x+1=0\)
2 \(6 x^2-7 x+1=0\)
3 \(x^2-6 x+7=0\)
4 \(x^2-7 x+6=0\)
Complex Numbers and Quadratic Equation

118472 If \(\alpha, \beta\) are the roots of \(a x^2+b x+c=0\), then the quadratic equation whose roots are \(\sqrt{5} \alpha, \sqrt{5} \beta\) is

1 \(a x^2+\sqrt{5} b x+5 c=0\)
2 \(a x^2+\sqrt{5} \mathrm{bx}+\sqrt{5} \mathrm{c}=0\)
3 \(a x^2+5 b x+\sqrt{5} c=0\)
4 \(a x^2+5 \mathrm{bx}+5 \mathrm{c}=0\)