Nature and Number of Roots
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118228 If \(\sin \alpha\) and \(\cos \alpha\) are the roots of the equation \(\mathbf{p x}+\mathbf{q x}+\mathbf{r}=\mathbf{0}\), then

1 \(\mathrm{p}^2+\mathrm{q}^2-2 \mathrm{pr}=0\)
2 \(\mathrm{p}^2-\mathrm{q}^2+2 \mathrm{pr}=0\)
3 \(\mathrm{p}^2-\mathrm{q}^2-2 \mathrm{pr}=0\)
4 \(\mathrm{p}^2+\mathrm{q}^2+2 \mathrm{pr}=0\)
Complex Numbers and Quadratic Equation

118229 Let \(\alpha\) and \(\beta\) be the roots of the equation \(\mathbf{x}^2+\mathbf{x}+\mathbf{1}=\mathbf{0}\), then the equation whose roots are \(\alpha^{19}, \beta^7\), is

1 \(x^2-x-1=0\)
2 \(x^2-x+1=0\)
3 \(x^2+x-1=0\)
4 \(x^2+x+1=0\)
Complex Numbers and Quadratic Equation

118230 The number of real roots of \((6-x)^4+(8-x)^4=16\) is

1 0
2 2
3 4
4 6
Complex Numbers and Quadratic Equation

118231 If the roots the equation \(x^2-p x+q=0\) differ by unity, then

1 \(\mathrm{p}^2=4 \mathrm{q}\)
2 \(\mathrm{p}^2=4 \mathrm{q}+1\)
3 \(\mathrm{p}^2=4 \mathrm{q}-1\)
4 none of these
Complex Numbers and Quadratic Equation

118228 If \(\sin \alpha\) and \(\cos \alpha\) are the roots of the equation \(\mathbf{p x}+\mathbf{q x}+\mathbf{r}=\mathbf{0}\), then

1 \(\mathrm{p}^2+\mathrm{q}^2-2 \mathrm{pr}=0\)
2 \(\mathrm{p}^2-\mathrm{q}^2+2 \mathrm{pr}=0\)
3 \(\mathrm{p}^2-\mathrm{q}^2-2 \mathrm{pr}=0\)
4 \(\mathrm{p}^2+\mathrm{q}^2+2 \mathrm{pr}=0\)
Complex Numbers and Quadratic Equation

118229 Let \(\alpha\) and \(\beta\) be the roots of the equation \(\mathbf{x}^2+\mathbf{x}+\mathbf{1}=\mathbf{0}\), then the equation whose roots are \(\alpha^{19}, \beta^7\), is

1 \(x^2-x-1=0\)
2 \(x^2-x+1=0\)
3 \(x^2+x-1=0\)
4 \(x^2+x+1=0\)
Complex Numbers and Quadratic Equation

118230 The number of real roots of \((6-x)^4+(8-x)^4=16\) is

1 0
2 2
3 4
4 6
Complex Numbers and Quadratic Equation

118231 If the roots the equation \(x^2-p x+q=0\) differ by unity, then

1 \(\mathrm{p}^2=4 \mathrm{q}\)
2 \(\mathrm{p}^2=4 \mathrm{q}+1\)
3 \(\mathrm{p}^2=4 \mathrm{q}-1\)
4 none of these
Complex Numbers and Quadratic Equation

118228 If \(\sin \alpha\) and \(\cos \alpha\) are the roots of the equation \(\mathbf{p x}+\mathbf{q x}+\mathbf{r}=\mathbf{0}\), then

1 \(\mathrm{p}^2+\mathrm{q}^2-2 \mathrm{pr}=0\)
2 \(\mathrm{p}^2-\mathrm{q}^2+2 \mathrm{pr}=0\)
3 \(\mathrm{p}^2-\mathrm{q}^2-2 \mathrm{pr}=0\)
4 \(\mathrm{p}^2+\mathrm{q}^2+2 \mathrm{pr}=0\)
Complex Numbers and Quadratic Equation

118229 Let \(\alpha\) and \(\beta\) be the roots of the equation \(\mathbf{x}^2+\mathbf{x}+\mathbf{1}=\mathbf{0}\), then the equation whose roots are \(\alpha^{19}, \beta^7\), is

1 \(x^2-x-1=0\)
2 \(x^2-x+1=0\)
3 \(x^2+x-1=0\)
4 \(x^2+x+1=0\)
Complex Numbers and Quadratic Equation

118230 The number of real roots of \((6-x)^4+(8-x)^4=16\) is

1 0
2 2
3 4
4 6
Complex Numbers and Quadratic Equation

118231 If the roots the equation \(x^2-p x+q=0\) differ by unity, then

1 \(\mathrm{p}^2=4 \mathrm{q}\)
2 \(\mathrm{p}^2=4 \mathrm{q}+1\)
3 \(\mathrm{p}^2=4 \mathrm{q}-1\)
4 none of these
Complex Numbers and Quadratic Equation

118228 If \(\sin \alpha\) and \(\cos \alpha\) are the roots of the equation \(\mathbf{p x}+\mathbf{q x}+\mathbf{r}=\mathbf{0}\), then

1 \(\mathrm{p}^2+\mathrm{q}^2-2 \mathrm{pr}=0\)
2 \(\mathrm{p}^2-\mathrm{q}^2+2 \mathrm{pr}=0\)
3 \(\mathrm{p}^2-\mathrm{q}^2-2 \mathrm{pr}=0\)
4 \(\mathrm{p}^2+\mathrm{q}^2+2 \mathrm{pr}=0\)
Complex Numbers and Quadratic Equation

118229 Let \(\alpha\) and \(\beta\) be the roots of the equation \(\mathbf{x}^2+\mathbf{x}+\mathbf{1}=\mathbf{0}\), then the equation whose roots are \(\alpha^{19}, \beta^7\), is

1 \(x^2-x-1=0\)
2 \(x^2-x+1=0\)
3 \(x^2+x-1=0\)
4 \(x^2+x+1=0\)
Complex Numbers and Quadratic Equation

118230 The number of real roots of \((6-x)^4+(8-x)^4=16\) is

1 0
2 2
3 4
4 6
Complex Numbers and Quadratic Equation

118231 If the roots the equation \(x^2-p x+q=0\) differ by unity, then

1 \(\mathrm{p}^2=4 \mathrm{q}\)
2 \(\mathrm{p}^2=4 \mathrm{q}+1\)
3 \(\mathrm{p}^2=4 \mathrm{q}-1\)
4 none of these