1 \(\mathrm{a}=-\mathrm{b}\)
2 \(\mathrm{b}=-\mathrm{c}\)
3 \(\mathrm{c}=-\mathrm{a}\)
4 \(b=a+c\)
Explanation:
B \(\text { Let } \alpha, \beta \text { are the roots of the equation, }\)
\(a x^2+b x+c=0, \text { Then, }\)
\(\alpha+\beta=-b / a\)
\(\alpha \beta=c / a\)
\(\text { Now, }(\alpha-1),(\beta-1) \text { are the roots of the equation, }\)
\(2 x^2+b x+2=0\)
\(\therefore \alpha-1+\beta-1=-b / 2 \Rightarrow \alpha+\beta-2=-b / 2\)
\((\alpha-1)(\beta-1)=1\)
\(\alpha \beta-(\alpha+\beta)+1=1\)
\(\frac{c}{a}+\frac{b}{a}=0\)
\(b+c=0\)
\(b=-c\)
Ans: b
Exp: (B) : Let \(\alpha, \beta\) are the roots of the equation, \(a x^2+b x+c=0\), Then,
Now, \((\alpha-1),(\beta-1)\) are the roots of the equation, \(2 \mathrm{x}^2+\mathrm{bx}+2=0\)