118107 The minimum value of the sum of the squares of the roots of x2+(3−a)x+1=2a is :
C Given,x2+(3−a)x+1=2ax2+(3−a)x+1−2a=0Let, α,β are the roots of the above,Then, α+β=(a−3)αβ=1−2aα2+β2=(α+β)2−2αβ=(a−3)2−2(1−2a)=a2+9−6a−2+4a=a2−2a+7=(a−1)2+7−1=(a−1)2+6∴ Minimum value of α2+β2=6[∵(a−1)2]=0
118108 For x2−(a+3)|x|+4=0 to have real solutions, the range of a is
A Given, x2−(a+3)|x|+4=0Case I:- x>0, then |x|=x∴x2−(a+3)x+4=0But x is real i.e. real solution.D=(a+3)2−16≥0D=(a+3+4)(a+3−4)≥0=(a+7)(a−1)≥0=a≥1 or a≤−7 But x>0 Case II :−x<0⇒|x|=−x∴x2−(a+3)(−x)+4=0⇒x2+(a+3)x+4=0 Discriminant (D)=(a+3)2−16≥0∴ We get, a≥1 or a≤−7∴a∈(−∞,−7)∪(1,∞)
118109 The number of real solutions of equation 3(x2+1x2)−2(x+1x)+5=0 is
D Given,3(x2+1x2)−2(x+1x)+5=03⋅[(x+1x)2−2]−2(x+1x)+5=0Let, (x+1x)=t we get-or3[t2−2]−2t+5=03t2−6−2t+5=03t2−2t−1=03t2−3t+t−1=03t(t−1)+1(t−1)=0(3t+1)(t−1)=0So, we get,3t+1=0,t=−1/3x+1x=1x2+1=xorx2−x+1=0p=(−1)2−4=−3<0⇒ No real solution.and 3(x+1x)+1=0⇒3(x2+1)+x=0⇒3x2+3+x=0∴D=(1)2−4×3×3=−35⇒ No real solution∴ The number of real solutions is zero.
118110 Let α be a root of the equation 1+x2+x4=0. Then the value of α1011+α2022]−α3033 is equal to :
A Given,1+x2+x4=0.Let, ω is root ( ω is cube root of unity)Then, ω1011+ω2022−ω3033=(ω3)337+(ω3)674−(ω3)1011=1+1−1=1