Solution of Quadratic and Higher Degree Equations
Complex Numbers and Quadratic Equation

118102 The quadratic equation whose roots are \(\frac{1}{3+\sqrt{2}}\) and \(\frac{1}{3-\sqrt{2}}\), willbe

1 \(7 \mathrm{x}^2+6 \mathrm{x}+1=0\)
2 \(6 x^2-7 x+1=0\)
3 \(\mathrm{x}^2-6 \mathrm{x}+7=0\)
4 \(x^2-7 x+6=0\)
Complex Numbers and Quadratic Equation

118104 Let \(\alpha\) and \(\beta\) be the roots of the equation \(x^2+(2 \mathrm{i}\) - 1) \(=0\). Then, the value of \(\left|\alpha^8+\beta^8\right|\) is equal to :

1 50
2 250
3 1250
4 1500
Complex Numbers and Quadratic Equation

118105 If \(f(x)\) is a second order polynomial (or quadratic expression in \(x\) ) and
\(\int_a^b f(x) d x=(a-b)\left(a^2+b^2+a b+2\right)\), then \(f(x)\) with be of the form

1 \(3 x^2+x+2\)
2 \(2 x^2-x\)
3 \(-3 x^2-2\)
4 \(3 x^2+2\)
Complex Numbers and Quadratic Equation

118106 If \(a\) and \(b\) are rational and \(\left(b^2+1\right)\) is not a perfect square, then the quadratic equation with rational coefficients whose one root is \(\frac{a}{2}\left(b+\sqrt{1+b^2}\right)\) is

1 \(x^2-2 a b x-a^2=0\)
Roots are,
\(\Rightarrow \frac{2 a b \pm \sqrt{4 a^2 b^2-4(1)\left(-a^2\right)}}{2(1)}\)
\(\Rightarrow \frac{2 a b \pm \sqrt{4 a^2\left(b^2+1\right)}}{2}\)
\(=\frac{2 a b \pm 2 a \sqrt{b^2+1}}{2}\)
\(=a b \pm a \sqrt{b^2+1}\)
So, it is not the required root . so, it is wrong option.
2 \(4 x^2-4 a b x-a^2=0\)
Roots are,
\(=\frac{4 a b \pm \sqrt{16 a^2 b^2+16 a^2}}{2(4)}\)
\(=\frac{4 a b \pm 4 a \sqrt{b^2+1}}{8}\)
\(=\frac{a}{2}\left[b \pm \sqrt{b^2+1}\right]\)So, this is the required option.
3 \(x^2-a b x-a^2=0\)
4 \(x^2-a b x+a^2=0\)
Complex Numbers and Quadratic Equation

118102 The quadratic equation whose roots are \(\frac{1}{3+\sqrt{2}}\) and \(\frac{1}{3-\sqrt{2}}\), willbe

1 \(7 \mathrm{x}^2+6 \mathrm{x}+1=0\)
2 \(6 x^2-7 x+1=0\)
3 \(\mathrm{x}^2-6 \mathrm{x}+7=0\)
4 \(x^2-7 x+6=0\)
Complex Numbers and Quadratic Equation

118104 Let \(\alpha\) and \(\beta\) be the roots of the equation \(x^2+(2 \mathrm{i}\) - 1) \(=0\). Then, the value of \(\left|\alpha^8+\beta^8\right|\) is equal to :

1 50
2 250
3 1250
4 1500
Complex Numbers and Quadratic Equation

118105 If \(f(x)\) is a second order polynomial (or quadratic expression in \(x\) ) and
\(\int_a^b f(x) d x=(a-b)\left(a^2+b^2+a b+2\right)\), then \(f(x)\) with be of the form

1 \(3 x^2+x+2\)
2 \(2 x^2-x\)
3 \(-3 x^2-2\)
4 \(3 x^2+2\)
Complex Numbers and Quadratic Equation

118106 If \(a\) and \(b\) are rational and \(\left(b^2+1\right)\) is not a perfect square, then the quadratic equation with rational coefficients whose one root is \(\frac{a}{2}\left(b+\sqrt{1+b^2}\right)\) is

1 \(x^2-2 a b x-a^2=0\)
Roots are,
\(\Rightarrow \frac{2 a b \pm \sqrt{4 a^2 b^2-4(1)\left(-a^2\right)}}{2(1)}\)
\(\Rightarrow \frac{2 a b \pm \sqrt{4 a^2\left(b^2+1\right)}}{2}\)
\(=\frac{2 a b \pm 2 a \sqrt{b^2+1}}{2}\)
\(=a b \pm a \sqrt{b^2+1}\)
So, it is not the required root . so, it is wrong option.
2 \(4 x^2-4 a b x-a^2=0\)
Roots are,
\(=\frac{4 a b \pm \sqrt{16 a^2 b^2+16 a^2}}{2(4)}\)
\(=\frac{4 a b \pm 4 a \sqrt{b^2+1}}{8}\)
\(=\frac{a}{2}\left[b \pm \sqrt{b^2+1}\right]\)So, this is the required option.
3 \(x^2-a b x-a^2=0\)
4 \(x^2-a b x+a^2=0\)
Complex Numbers and Quadratic Equation

118102 The quadratic equation whose roots are \(\frac{1}{3+\sqrt{2}}\) and \(\frac{1}{3-\sqrt{2}}\), willbe

1 \(7 \mathrm{x}^2+6 \mathrm{x}+1=0\)
2 \(6 x^2-7 x+1=0\)
3 \(\mathrm{x}^2-6 \mathrm{x}+7=0\)
4 \(x^2-7 x+6=0\)
Complex Numbers and Quadratic Equation

118104 Let \(\alpha\) and \(\beta\) be the roots of the equation \(x^2+(2 \mathrm{i}\) - 1) \(=0\). Then, the value of \(\left|\alpha^8+\beta^8\right|\) is equal to :

1 50
2 250
3 1250
4 1500
Complex Numbers and Quadratic Equation

118105 If \(f(x)\) is a second order polynomial (or quadratic expression in \(x\) ) and
\(\int_a^b f(x) d x=(a-b)\left(a^2+b^2+a b+2\right)\), then \(f(x)\) with be of the form

1 \(3 x^2+x+2\)
2 \(2 x^2-x\)
3 \(-3 x^2-2\)
4 \(3 x^2+2\)
Complex Numbers and Quadratic Equation

118106 If \(a\) and \(b\) are rational and \(\left(b^2+1\right)\) is not a perfect square, then the quadratic equation with rational coefficients whose one root is \(\frac{a}{2}\left(b+\sqrt{1+b^2}\right)\) is

1 \(x^2-2 a b x-a^2=0\)
Roots are,
\(\Rightarrow \frac{2 a b \pm \sqrt{4 a^2 b^2-4(1)\left(-a^2\right)}}{2(1)}\)
\(\Rightarrow \frac{2 a b \pm \sqrt{4 a^2\left(b^2+1\right)}}{2}\)
\(=\frac{2 a b \pm 2 a \sqrt{b^2+1}}{2}\)
\(=a b \pm a \sqrt{b^2+1}\)
So, it is not the required root . so, it is wrong option.
2 \(4 x^2-4 a b x-a^2=0\)
Roots are,
\(=\frac{4 a b \pm \sqrt{16 a^2 b^2+16 a^2}}{2(4)}\)
\(=\frac{4 a b \pm 4 a \sqrt{b^2+1}}{8}\)
\(=\frac{a}{2}\left[b \pm \sqrt{b^2+1}\right]\)So, this is the required option.
3 \(x^2-a b x-a^2=0\)
4 \(x^2-a b x+a^2=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118102 The quadratic equation whose roots are \(\frac{1}{3+\sqrt{2}}\) and \(\frac{1}{3-\sqrt{2}}\), willbe

1 \(7 \mathrm{x}^2+6 \mathrm{x}+1=0\)
2 \(6 x^2-7 x+1=0\)
3 \(\mathrm{x}^2-6 \mathrm{x}+7=0\)
4 \(x^2-7 x+6=0\)
Complex Numbers and Quadratic Equation

118104 Let \(\alpha\) and \(\beta\) be the roots of the equation \(x^2+(2 \mathrm{i}\) - 1) \(=0\). Then, the value of \(\left|\alpha^8+\beta^8\right|\) is equal to :

1 50
2 250
3 1250
4 1500
Complex Numbers and Quadratic Equation

118105 If \(f(x)\) is a second order polynomial (or quadratic expression in \(x\) ) and
\(\int_a^b f(x) d x=(a-b)\left(a^2+b^2+a b+2\right)\), then \(f(x)\) with be of the form

1 \(3 x^2+x+2\)
2 \(2 x^2-x\)
3 \(-3 x^2-2\)
4 \(3 x^2+2\)
Complex Numbers and Quadratic Equation

118106 If \(a\) and \(b\) are rational and \(\left(b^2+1\right)\) is not a perfect square, then the quadratic equation with rational coefficients whose one root is \(\frac{a}{2}\left(b+\sqrt{1+b^2}\right)\) is

1 \(x^2-2 a b x-a^2=0\)
Roots are,
\(\Rightarrow \frac{2 a b \pm \sqrt{4 a^2 b^2-4(1)\left(-a^2\right)}}{2(1)}\)
\(\Rightarrow \frac{2 a b \pm \sqrt{4 a^2\left(b^2+1\right)}}{2}\)
\(=\frac{2 a b \pm 2 a \sqrt{b^2+1}}{2}\)
\(=a b \pm a \sqrt{b^2+1}\)
So, it is not the required root . so, it is wrong option.
2 \(4 x^2-4 a b x-a^2=0\)
Roots are,
\(=\frac{4 a b \pm \sqrt{16 a^2 b^2+16 a^2}}{2(4)}\)
\(=\frac{4 a b \pm 4 a \sqrt{b^2+1}}{8}\)
\(=\frac{a}{2}\left[b \pm \sqrt{b^2+1}\right]\)So, this is the required option.
3 \(x^2-a b x-a^2=0\)
4 \(x^2-a b x+a^2=0\)