Solution of Quadratic and Higher Degree Equations
Complex Numbers and Quadratic Equation

118210 If \(\mathrm{z} \in \mathrm{C}\) and \(\mathrm{iz}^3+4 \mathrm{z}^2-\mathrm{z}+4 \mathrm{i}=0\), then a complex roots of this equation having minimum magnitude is

1 \(4 \mathrm{i}\)
2 \(\frac{1-\mathrm{i}}{\sqrt{2}}\)
3 \(\frac{\sqrt{3}+\mathrm{i}}{2}\)
4 \(\frac{1+\mathrm{i}}{\sqrt{2}}\)
Complex Numbers and Quadratic Equation

118211 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3-a x^2+b x\) \(-\mathbf{c}=\mathbf{0}\), then \(\Sigma \boldsymbol{\alpha}^2(\boldsymbol{\beta}+\gamma)=\)

1 )ab-3c
2 \(\frac{a b-3 c}{c}\)
3 \(\frac{b^2-2 a c}{c^2}\)
4 \(\frac{\mathrm{a}^2-2 \mathrm{~b}}{\mathrm{c}^2}\)
Complex Numbers and Quadratic Equation

118212 For \(x>2\), then equation \(\sqrt{x+2}-\sqrt{x-2}=\sqrt{4 x-2}\)
has

1 one solution
2 two solutions
3 more than two solutions
4 No solution
Complex Numbers and Quadratic Equation

118099 What is the coefficient of \(x^2\) in \(p(x)\) ?

1 -1
2 1
3 0
4 None of the above
Complex Numbers and Quadratic Equation

118056 If \(\alpha\) and \(\beta\) are the roots of \(x^2-a x+b^2=0\), then \(\alpha^2+\beta^2\) is equal to \(\qquad\)

1 \(2 \mathrm{a}^2-\mathrm{b}^2\)
2 \(a^2+b^2\)
3 \(\mathrm{a}^2-2 \mathrm{~b}^2\)
4 \(a^2-b^2\)
Complex Numbers and Quadratic Equation

118210 If \(\mathrm{z} \in \mathrm{C}\) and \(\mathrm{iz}^3+4 \mathrm{z}^2-\mathrm{z}+4 \mathrm{i}=0\), then a complex roots of this equation having minimum magnitude is

1 \(4 \mathrm{i}\)
2 \(\frac{1-\mathrm{i}}{\sqrt{2}}\)
3 \(\frac{\sqrt{3}+\mathrm{i}}{2}\)
4 \(\frac{1+\mathrm{i}}{\sqrt{2}}\)
Complex Numbers and Quadratic Equation

118211 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3-a x^2+b x\) \(-\mathbf{c}=\mathbf{0}\), then \(\Sigma \boldsymbol{\alpha}^2(\boldsymbol{\beta}+\gamma)=\)

1 )ab-3c
2 \(\frac{a b-3 c}{c}\)
3 \(\frac{b^2-2 a c}{c^2}\)
4 \(\frac{\mathrm{a}^2-2 \mathrm{~b}}{\mathrm{c}^2}\)
Complex Numbers and Quadratic Equation

118212 For \(x>2\), then equation \(\sqrt{x+2}-\sqrt{x-2}=\sqrt{4 x-2}\)
has

1 one solution
2 two solutions
3 more than two solutions
4 No solution
Complex Numbers and Quadratic Equation

118099 What is the coefficient of \(x^2\) in \(p(x)\) ?

1 -1
2 1
3 0
4 None of the above
Complex Numbers and Quadratic Equation

118056 If \(\alpha\) and \(\beta\) are the roots of \(x^2-a x+b^2=0\), then \(\alpha^2+\beta^2\) is equal to \(\qquad\)

1 \(2 \mathrm{a}^2-\mathrm{b}^2\)
2 \(a^2+b^2\)
3 \(\mathrm{a}^2-2 \mathrm{~b}^2\)
4 \(a^2-b^2\)
Complex Numbers and Quadratic Equation

118210 If \(\mathrm{z} \in \mathrm{C}\) and \(\mathrm{iz}^3+4 \mathrm{z}^2-\mathrm{z}+4 \mathrm{i}=0\), then a complex roots of this equation having minimum magnitude is

1 \(4 \mathrm{i}\)
2 \(\frac{1-\mathrm{i}}{\sqrt{2}}\)
3 \(\frac{\sqrt{3}+\mathrm{i}}{2}\)
4 \(\frac{1+\mathrm{i}}{\sqrt{2}}\)
Complex Numbers and Quadratic Equation

118211 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3-a x^2+b x\) \(-\mathbf{c}=\mathbf{0}\), then \(\Sigma \boldsymbol{\alpha}^2(\boldsymbol{\beta}+\gamma)=\)

1 )ab-3c
2 \(\frac{a b-3 c}{c}\)
3 \(\frac{b^2-2 a c}{c^2}\)
4 \(\frac{\mathrm{a}^2-2 \mathrm{~b}}{\mathrm{c}^2}\)
Complex Numbers and Quadratic Equation

118212 For \(x>2\), then equation \(\sqrt{x+2}-\sqrt{x-2}=\sqrt{4 x-2}\)
has

1 one solution
2 two solutions
3 more than two solutions
4 No solution
Complex Numbers and Quadratic Equation

118099 What is the coefficient of \(x^2\) in \(p(x)\) ?

1 -1
2 1
3 0
4 None of the above
Complex Numbers and Quadratic Equation

118056 If \(\alpha\) and \(\beta\) are the roots of \(x^2-a x+b^2=0\), then \(\alpha^2+\beta^2\) is equal to \(\qquad\)

1 \(2 \mathrm{a}^2-\mathrm{b}^2\)
2 \(a^2+b^2\)
3 \(\mathrm{a}^2-2 \mathrm{~b}^2\)
4 \(a^2-b^2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118210 If \(\mathrm{z} \in \mathrm{C}\) and \(\mathrm{iz}^3+4 \mathrm{z}^2-\mathrm{z}+4 \mathrm{i}=0\), then a complex roots of this equation having minimum magnitude is

1 \(4 \mathrm{i}\)
2 \(\frac{1-\mathrm{i}}{\sqrt{2}}\)
3 \(\frac{\sqrt{3}+\mathrm{i}}{2}\)
4 \(\frac{1+\mathrm{i}}{\sqrt{2}}\)
Complex Numbers and Quadratic Equation

118211 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3-a x^2+b x\) \(-\mathbf{c}=\mathbf{0}\), then \(\Sigma \boldsymbol{\alpha}^2(\boldsymbol{\beta}+\gamma)=\)

1 )ab-3c
2 \(\frac{a b-3 c}{c}\)
3 \(\frac{b^2-2 a c}{c^2}\)
4 \(\frac{\mathrm{a}^2-2 \mathrm{~b}}{\mathrm{c}^2}\)
Complex Numbers and Quadratic Equation

118212 For \(x>2\), then equation \(\sqrt{x+2}-\sqrt{x-2}=\sqrt{4 x-2}\)
has

1 one solution
2 two solutions
3 more than two solutions
4 No solution
Complex Numbers and Quadratic Equation

118099 What is the coefficient of \(x^2\) in \(p(x)\) ?

1 -1
2 1
3 0
4 None of the above
Complex Numbers and Quadratic Equation

118056 If \(\alpha\) and \(\beta\) are the roots of \(x^2-a x+b^2=0\), then \(\alpha^2+\beta^2\) is equal to \(\qquad\)

1 \(2 \mathrm{a}^2-\mathrm{b}^2\)
2 \(a^2+b^2\)
3 \(\mathrm{a}^2-2 \mathrm{~b}^2\)
4 \(a^2-b^2\)
Complex Numbers and Quadratic Equation

118210 If \(\mathrm{z} \in \mathrm{C}\) and \(\mathrm{iz}^3+4 \mathrm{z}^2-\mathrm{z}+4 \mathrm{i}=0\), then a complex roots of this equation having minimum magnitude is

1 \(4 \mathrm{i}\)
2 \(\frac{1-\mathrm{i}}{\sqrt{2}}\)
3 \(\frac{\sqrt{3}+\mathrm{i}}{2}\)
4 \(\frac{1+\mathrm{i}}{\sqrt{2}}\)
Complex Numbers and Quadratic Equation

118211 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3-a x^2+b x\) \(-\mathbf{c}=\mathbf{0}\), then \(\Sigma \boldsymbol{\alpha}^2(\boldsymbol{\beta}+\gamma)=\)

1 )ab-3c
2 \(\frac{a b-3 c}{c}\)
3 \(\frac{b^2-2 a c}{c^2}\)
4 \(\frac{\mathrm{a}^2-2 \mathrm{~b}}{\mathrm{c}^2}\)
Complex Numbers and Quadratic Equation

118212 For \(x>2\), then equation \(\sqrt{x+2}-\sqrt{x-2}=\sqrt{4 x-2}\)
has

1 one solution
2 two solutions
3 more than two solutions
4 No solution
Complex Numbers and Quadratic Equation

118099 What is the coefficient of \(x^2\) in \(p(x)\) ?

1 -1
2 1
3 0
4 None of the above
Complex Numbers and Quadratic Equation

118056 If \(\alpha\) and \(\beta\) are the roots of \(x^2-a x+b^2=0\), then \(\alpha^2+\beta^2\) is equal to \(\qquad\)

1 \(2 \mathrm{a}^2-\mathrm{b}^2\)
2 \(a^2+b^2\)
3 \(\mathrm{a}^2-2 \mathrm{~b}^2\)
4 \(a^2-b^2\)