Solution of Quadratic and Higher Degree Equations
Complex Numbers and Quadratic Equation

118078 A matrix \(A\) is such that \(A^2=2 A-I\), where \(I\) is unity matrix, then for \(n \geq 2, A^n\) is equal to

1 \(\mathrm{nA}-(\mathrm{n}-1) \mathrm{I}\)
2 \(\mathrm{nA}-\mathrm{I}\)
3 \(2^{\mathrm{n}-1} \mathrm{~A}-(\mathrm{n}-1) \mathrm{I}\)
4 \(2^{\mathrm{n}} \mathrm{A}-\mathrm{nI}\)
Complex Numbers and Quadratic Equation

118079 The number of solutions of the equation \(\sin 2 x\) \(+2 \sin x-\cos x-1=0\) in the range \(0 \leq x \leq 2 \pi\) is

1 3
2 4
3 2
4 None of these
Complex Numbers and Quadratic Equation

118080 If \(5 p^2-7 p-3=0\) and \(5 q^2-7 q-3=0, p \neq q\), then the equation whose roots are \(5 p-4 q\) and \(5 q-4 p\) is

1 \(5 \mathrm{x}^2+7 \mathrm{x}-439=0\)
2 \(5 x^2-7 x-439=0\)
3 \(5 \mathrm{x}^2+7 \mathrm{x}+439=0\)
4 \(5 \mathrm{x}^2+\mathrm{x}-439=0\)
Complex Numbers and Quadratic Equation

118081 Let \(\alpha, \beta\) be the roots of \(x^2+3 x+5=0\), then the equation whose roots are \(-\frac{1}{\alpha}\) and \(-\frac{1}{\beta}\) is

1 \(5 x^2+3 x-4=0\)
2 \(5 x^2-3 x+4=0\)
3 \(5 x^2+3 x-1=0\)
4 \(5 x^2-3 x+1=0\)
Complex Numbers and Quadratic Equation

118078 A matrix \(A\) is such that \(A^2=2 A-I\), where \(I\) is unity matrix, then for \(n \geq 2, A^n\) is equal to

1 \(\mathrm{nA}-(\mathrm{n}-1) \mathrm{I}\)
2 \(\mathrm{nA}-\mathrm{I}\)
3 \(2^{\mathrm{n}-1} \mathrm{~A}-(\mathrm{n}-1) \mathrm{I}\)
4 \(2^{\mathrm{n}} \mathrm{A}-\mathrm{nI}\)
Complex Numbers and Quadratic Equation

118079 The number of solutions of the equation \(\sin 2 x\) \(+2 \sin x-\cos x-1=0\) in the range \(0 \leq x \leq 2 \pi\) is

1 3
2 4
3 2
4 None of these
Complex Numbers and Quadratic Equation

118080 If \(5 p^2-7 p-3=0\) and \(5 q^2-7 q-3=0, p \neq q\), then the equation whose roots are \(5 p-4 q\) and \(5 q-4 p\) is

1 \(5 \mathrm{x}^2+7 \mathrm{x}-439=0\)
2 \(5 x^2-7 x-439=0\)
3 \(5 \mathrm{x}^2+7 \mathrm{x}+439=0\)
4 \(5 \mathrm{x}^2+\mathrm{x}-439=0\)
Complex Numbers and Quadratic Equation

118081 Let \(\alpha, \beta\) be the roots of \(x^2+3 x+5=0\), then the equation whose roots are \(-\frac{1}{\alpha}\) and \(-\frac{1}{\beta}\) is

1 \(5 x^2+3 x-4=0\)
2 \(5 x^2-3 x+4=0\)
3 \(5 x^2+3 x-1=0\)
4 \(5 x^2-3 x+1=0\)
Complex Numbers and Quadratic Equation

118078 A matrix \(A\) is such that \(A^2=2 A-I\), where \(I\) is unity matrix, then for \(n \geq 2, A^n\) is equal to

1 \(\mathrm{nA}-(\mathrm{n}-1) \mathrm{I}\)
2 \(\mathrm{nA}-\mathrm{I}\)
3 \(2^{\mathrm{n}-1} \mathrm{~A}-(\mathrm{n}-1) \mathrm{I}\)
4 \(2^{\mathrm{n}} \mathrm{A}-\mathrm{nI}\)
Complex Numbers and Quadratic Equation

118079 The number of solutions of the equation \(\sin 2 x\) \(+2 \sin x-\cos x-1=0\) in the range \(0 \leq x \leq 2 \pi\) is

1 3
2 4
3 2
4 None of these
Complex Numbers and Quadratic Equation

118080 If \(5 p^2-7 p-3=0\) and \(5 q^2-7 q-3=0, p \neq q\), then the equation whose roots are \(5 p-4 q\) and \(5 q-4 p\) is

1 \(5 \mathrm{x}^2+7 \mathrm{x}-439=0\)
2 \(5 x^2-7 x-439=0\)
3 \(5 \mathrm{x}^2+7 \mathrm{x}+439=0\)
4 \(5 \mathrm{x}^2+\mathrm{x}-439=0\)
Complex Numbers and Quadratic Equation

118081 Let \(\alpha, \beta\) be the roots of \(x^2+3 x+5=0\), then the equation whose roots are \(-\frac{1}{\alpha}\) and \(-\frac{1}{\beta}\) is

1 \(5 x^2+3 x-4=0\)
2 \(5 x^2-3 x+4=0\)
3 \(5 x^2+3 x-1=0\)
4 \(5 x^2-3 x+1=0\)
Complex Numbers and Quadratic Equation

118078 A matrix \(A\) is such that \(A^2=2 A-I\), where \(I\) is unity matrix, then for \(n \geq 2, A^n\) is equal to

1 \(\mathrm{nA}-(\mathrm{n}-1) \mathrm{I}\)
2 \(\mathrm{nA}-\mathrm{I}\)
3 \(2^{\mathrm{n}-1} \mathrm{~A}-(\mathrm{n}-1) \mathrm{I}\)
4 \(2^{\mathrm{n}} \mathrm{A}-\mathrm{nI}\)
Complex Numbers and Quadratic Equation

118079 The number of solutions of the equation \(\sin 2 x\) \(+2 \sin x-\cos x-1=0\) in the range \(0 \leq x \leq 2 \pi\) is

1 3
2 4
3 2
4 None of these
Complex Numbers and Quadratic Equation

118080 If \(5 p^2-7 p-3=0\) and \(5 q^2-7 q-3=0, p \neq q\), then the equation whose roots are \(5 p-4 q\) and \(5 q-4 p\) is

1 \(5 \mathrm{x}^2+7 \mathrm{x}-439=0\)
2 \(5 x^2-7 x-439=0\)
3 \(5 \mathrm{x}^2+7 \mathrm{x}+439=0\)
4 \(5 \mathrm{x}^2+\mathrm{x}-439=0\)
Complex Numbers and Quadratic Equation

118081 Let \(\alpha, \beta\) be the roots of \(x^2+3 x+5=0\), then the equation whose roots are \(-\frac{1}{\alpha}\) and \(-\frac{1}{\beta}\) is

1 \(5 x^2+3 x-4=0\)
2 \(5 x^2-3 x+4=0\)
3 \(5 x^2+3 x-1=0\)
4 \(5 x^2-3 x+1=0\)