Solution of Quadratic and Higher Degree Equations
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118068 If \(\alpha, \beta\) are the roots of \(x^2+p x+q=0\), and \(\omega\) is an imaginary cube root of unity, then value of \(\left(\omega \alpha+\omega^2 \beta\right)\left(\omega^2 \alpha+\omega \beta\right)\) is

1 \(\mathrm{p}^2\)
2 \(3 q\)
3 \(p^2-2 q\)
4 \(p^2-3 q\)
Complex Numbers and Quadratic Equation

118069 The number of real roots of
\(\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^3+\left(\mathrm{x}+\frac{\mathbf{1}}{\mathrm{x}}\right)=\mathbf{0}\)

1 0
2 2
3 4
4 6
Complex Numbers and Quadratic Equation

118071 If \(x=\omega-\omega^2-2\), then the value of \(x^4+3 x^3+2 x^2-11 x-6\) is

1 1
2 -1
3 2
4 None of these
Complex Numbers and Quadratic Equation

118073 The roots of the equation \(x^2-2 \sqrt{2} x+1=0\) are

1 Real and different
2 Imaginary and different
3 Real and equal
4 Rational and different
Complex Numbers and Quadratic Equation

118068 If \(\alpha, \beta\) are the roots of \(x^2+p x+q=0\), and \(\omega\) is an imaginary cube root of unity, then value of \(\left(\omega \alpha+\omega^2 \beta\right)\left(\omega^2 \alpha+\omega \beta\right)\) is

1 \(\mathrm{p}^2\)
2 \(3 q\)
3 \(p^2-2 q\)
4 \(p^2-3 q\)
Complex Numbers and Quadratic Equation

118069 The number of real roots of
\(\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^3+\left(\mathrm{x}+\frac{\mathbf{1}}{\mathrm{x}}\right)=\mathbf{0}\)

1 0
2 2
3 4
4 6
Complex Numbers and Quadratic Equation

118071 If \(x=\omega-\omega^2-2\), then the value of \(x^4+3 x^3+2 x^2-11 x-6\) is

1 1
2 -1
3 2
4 None of these
Complex Numbers and Quadratic Equation

118073 The roots of the equation \(x^2-2 \sqrt{2} x+1=0\) are

1 Real and different
2 Imaginary and different
3 Real and equal
4 Rational and different
Complex Numbers and Quadratic Equation

118068 If \(\alpha, \beta\) are the roots of \(x^2+p x+q=0\), and \(\omega\) is an imaginary cube root of unity, then value of \(\left(\omega \alpha+\omega^2 \beta\right)\left(\omega^2 \alpha+\omega \beta\right)\) is

1 \(\mathrm{p}^2\)
2 \(3 q\)
3 \(p^2-2 q\)
4 \(p^2-3 q\)
Complex Numbers and Quadratic Equation

118069 The number of real roots of
\(\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^3+\left(\mathrm{x}+\frac{\mathbf{1}}{\mathrm{x}}\right)=\mathbf{0}\)

1 0
2 2
3 4
4 6
Complex Numbers and Quadratic Equation

118071 If \(x=\omega-\omega^2-2\), then the value of \(x^4+3 x^3+2 x^2-11 x-6\) is

1 1
2 -1
3 2
4 None of these
Complex Numbers and Quadratic Equation

118073 The roots of the equation \(x^2-2 \sqrt{2} x+1=0\) are

1 Real and different
2 Imaginary and different
3 Real and equal
4 Rational and different
Complex Numbers and Quadratic Equation

118068 If \(\alpha, \beta\) are the roots of \(x^2+p x+q=0\), and \(\omega\) is an imaginary cube root of unity, then value of \(\left(\omega \alpha+\omega^2 \beta\right)\left(\omega^2 \alpha+\omega \beta\right)\) is

1 \(\mathrm{p}^2\)
2 \(3 q\)
3 \(p^2-2 q\)
4 \(p^2-3 q\)
Complex Numbers and Quadratic Equation

118069 The number of real roots of
\(\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^3+\left(\mathrm{x}+\frac{\mathbf{1}}{\mathrm{x}}\right)=\mathbf{0}\)

1 0
2 2
3 4
4 6
Complex Numbers and Quadratic Equation

118071 If \(x=\omega-\omega^2-2\), then the value of \(x^4+3 x^3+2 x^2-11 x-6\) is

1 1
2 -1
3 2
4 None of these
Complex Numbers and Quadratic Equation

118073 The roots of the equation \(x^2-2 \sqrt{2} x+1=0\) are

1 Real and different
2 Imaginary and different
3 Real and equal
4 Rational and different