Solution of Quadratic and Higher Degree Equations
Complex Numbers and Quadratic Equation

118059 If \(a,-a, b\) are the roots of \(x^3-5 x^2-x+5=0\), then \(b\) is a root of

1 \(x^2-5 x+10=0\)
2 \(x^2+3 x-20=0\)
3 \(x^2+5 x-30=0\)
4 \(x^2-3 x-10=0\)
Complex Numbers and Quadratic Equation

118070 If \(\alpha\) and \(\beta\) are roots of \(x^2-x+1=0\), then the equation whose roots are \(\alpha^{100}\) and \(\beta^{100}\) are

1 \(\mathrm{x}^2-\mathrm{x}+1=0\)
2 \(x^2+x-1=0\)
3 \(x^2-x-1=0\)
4 \(x^2+x+1=0\)
Complex Numbers and Quadratic Equation

118072 If \(\alpha, \beta\) are the roots of the equation \(a x^2+b x+c=0\), then the roots of the equation \(\mathbf{a x ^ { 2 }}+\mathbf{b x}(\mathbf{x}+\mathbf{1})+\mathbf{c}(\mathbf{x}+\mathbf{1})^2=\mathbf{0}\) are

1 \(\alpha-1, \beta-1\)
2 \(\alpha+1, \beta+1\)
3 \(\frac{\alpha}{\alpha-1}, \frac{\beta}{\beta-1}\)
4 \(\frac{\alpha}{1-\alpha}, \frac{\beta}{1-\beta}\)
Complex Numbers and Quadratic Equation

118103 Let \(\alpha, \beta\) be the roots of the quadratic equation \(\mathbf{x}^2+\sqrt{6} \mathrm{x}+3=0\).
Then \(\frac{\alpha^{23}+\beta^{23}+\alpha^{14}+\beta^{14}}{\alpha^{15}+\beta^{15}+\alpha^{10}+\beta^{10}}\) is equal to

1 729
2 72
3 81
4 9
Complex Numbers and Quadratic Equation

118059 If \(a,-a, b\) are the roots of \(x^3-5 x^2-x+5=0\), then \(b\) is a root of

1 \(x^2-5 x+10=0\)
2 \(x^2+3 x-20=0\)
3 \(x^2+5 x-30=0\)
4 \(x^2-3 x-10=0\)
Complex Numbers and Quadratic Equation

118070 If \(\alpha\) and \(\beta\) are roots of \(x^2-x+1=0\), then the equation whose roots are \(\alpha^{100}\) and \(\beta^{100}\) are

1 \(\mathrm{x}^2-\mathrm{x}+1=0\)
2 \(x^2+x-1=0\)
3 \(x^2-x-1=0\)
4 \(x^2+x+1=0\)
Complex Numbers and Quadratic Equation

118072 If \(\alpha, \beta\) are the roots of the equation \(a x^2+b x+c=0\), then the roots of the equation \(\mathbf{a x ^ { 2 }}+\mathbf{b x}(\mathbf{x}+\mathbf{1})+\mathbf{c}(\mathbf{x}+\mathbf{1})^2=\mathbf{0}\) are

1 \(\alpha-1, \beta-1\)
2 \(\alpha+1, \beta+1\)
3 \(\frac{\alpha}{\alpha-1}, \frac{\beta}{\beta-1}\)
4 \(\frac{\alpha}{1-\alpha}, \frac{\beta}{1-\beta}\)
Complex Numbers and Quadratic Equation

118103 Let \(\alpha, \beta\) be the roots of the quadratic equation \(\mathbf{x}^2+\sqrt{6} \mathrm{x}+3=0\).
Then \(\frac{\alpha^{23}+\beta^{23}+\alpha^{14}+\beta^{14}}{\alpha^{15}+\beta^{15}+\alpha^{10}+\beta^{10}}\) is equal to

1 729
2 72
3 81
4 9
Complex Numbers and Quadratic Equation

118059 If \(a,-a, b\) are the roots of \(x^3-5 x^2-x+5=0\), then \(b\) is a root of

1 \(x^2-5 x+10=0\)
2 \(x^2+3 x-20=0\)
3 \(x^2+5 x-30=0\)
4 \(x^2-3 x-10=0\)
Complex Numbers and Quadratic Equation

118070 If \(\alpha\) and \(\beta\) are roots of \(x^2-x+1=0\), then the equation whose roots are \(\alpha^{100}\) and \(\beta^{100}\) are

1 \(\mathrm{x}^2-\mathrm{x}+1=0\)
2 \(x^2+x-1=0\)
3 \(x^2-x-1=0\)
4 \(x^2+x+1=0\)
Complex Numbers and Quadratic Equation

118072 If \(\alpha, \beta\) are the roots of the equation \(a x^2+b x+c=0\), then the roots of the equation \(\mathbf{a x ^ { 2 }}+\mathbf{b x}(\mathbf{x}+\mathbf{1})+\mathbf{c}(\mathbf{x}+\mathbf{1})^2=\mathbf{0}\) are

1 \(\alpha-1, \beta-1\)
2 \(\alpha+1, \beta+1\)
3 \(\frac{\alpha}{\alpha-1}, \frac{\beta}{\beta-1}\)
4 \(\frac{\alpha}{1-\alpha}, \frac{\beta}{1-\beta}\)
Complex Numbers and Quadratic Equation

118103 Let \(\alpha, \beta\) be the roots of the quadratic equation \(\mathbf{x}^2+\sqrt{6} \mathrm{x}+3=0\).
Then \(\frac{\alpha^{23}+\beta^{23}+\alpha^{14}+\beta^{14}}{\alpha^{15}+\beta^{15}+\alpha^{10}+\beta^{10}}\) is equal to

1 729
2 72
3 81
4 9
Complex Numbers and Quadratic Equation

118059 If \(a,-a, b\) are the roots of \(x^3-5 x^2-x+5=0\), then \(b\) is a root of

1 \(x^2-5 x+10=0\)
2 \(x^2+3 x-20=0\)
3 \(x^2+5 x-30=0\)
4 \(x^2-3 x-10=0\)
Complex Numbers and Quadratic Equation

118070 If \(\alpha\) and \(\beta\) are roots of \(x^2-x+1=0\), then the equation whose roots are \(\alpha^{100}\) and \(\beta^{100}\) are

1 \(\mathrm{x}^2-\mathrm{x}+1=0\)
2 \(x^2+x-1=0\)
3 \(x^2-x-1=0\)
4 \(x^2+x+1=0\)
Complex Numbers and Quadratic Equation

118072 If \(\alpha, \beta\) are the roots of the equation \(a x^2+b x+c=0\), then the roots of the equation \(\mathbf{a x ^ { 2 }}+\mathbf{b x}(\mathbf{x}+\mathbf{1})+\mathbf{c}(\mathbf{x}+\mathbf{1})^2=\mathbf{0}\) are

1 \(\alpha-1, \beta-1\)
2 \(\alpha+1, \beta+1\)
3 \(\frac{\alpha}{\alpha-1}, \frac{\beta}{\beta-1}\)
4 \(\frac{\alpha}{1-\alpha}, \frac{\beta}{1-\beta}\)
Complex Numbers and Quadratic Equation

118103 Let \(\alpha, \beta\) be the roots of the quadratic equation \(\mathbf{x}^2+\sqrt{6} \mathrm{x}+3=0\).
Then \(\frac{\alpha^{23}+\beta^{23}+\alpha^{14}+\beta^{14}}{\alpha^{15}+\beta^{15}+\alpha^{10}+\beta^{10}}\) is equal to

1 729
2 72
3 81
4 9