Representation of Complex Numbers in 2-D
Complex Numbers and Quadratic Equation

117739 The locus of the point \(z=x+\) iy satisfying \(\left|\frac{\mathbf{z}-\mathbf{2 i}}{\mathbf{z}+2 \mathbf{i}}\right|=1\) is

1 \(x\)-axis
2 \(y\)-axis
3 \(y=2\)
4 \(x=2\)
Complex Numbers and Quadratic Equation

117740 For \(z \neq i\), define \(\omega=\frac{z+i}{z-i}\), then \(|\omega|\lt 1\) implies that

1 \(\operatorname{Re} z>0\)
2 \(\operatorname{Re} z=0\)
3 \(\operatorname{Im} z=0\)
4 \(\operatorname{Im} z\lt 0\)
Complex Numbers and Quadratic Equation

117741 If a complex number \(z\) satisfies \(\left|z^2-1\right|=|z|^2+1\), then \(\mathrm{z}\) lies on

1 The real axis
2 The imaginary axis
3 \(y=x\)
4 a circle
Complex Numbers and Quadratic Equation

117742 If a is a complex number and \(b\) is a real number then the equation \(\bar{a}+\mathbf{a}+\mathbf{b}=\mathbf{0}\) represents a

1 straight line
2 parabola
3 circle
4 hyperbola
Complex Numbers and Quadratic Equation

117743 \(\frac{\left(\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}\right)^8}{\left(\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}\right)^8}\)

1 -1
2 0
3 1
4 \(2 \mathrm{i}\)
Complex Numbers and Quadratic Equation

117739 The locus of the point \(z=x+\) iy satisfying \(\left|\frac{\mathbf{z}-\mathbf{2 i}}{\mathbf{z}+2 \mathbf{i}}\right|=1\) is

1 \(x\)-axis
2 \(y\)-axis
3 \(y=2\)
4 \(x=2\)
Complex Numbers and Quadratic Equation

117740 For \(z \neq i\), define \(\omega=\frac{z+i}{z-i}\), then \(|\omega|\lt 1\) implies that

1 \(\operatorname{Re} z>0\)
2 \(\operatorname{Re} z=0\)
3 \(\operatorname{Im} z=0\)
4 \(\operatorname{Im} z\lt 0\)
Complex Numbers and Quadratic Equation

117741 If a complex number \(z\) satisfies \(\left|z^2-1\right|=|z|^2+1\), then \(\mathrm{z}\) lies on

1 The real axis
2 The imaginary axis
3 \(y=x\)
4 a circle
Complex Numbers and Quadratic Equation

117742 If a is a complex number and \(b\) is a real number then the equation \(\bar{a}+\mathbf{a}+\mathbf{b}=\mathbf{0}\) represents a

1 straight line
2 parabola
3 circle
4 hyperbola
Complex Numbers and Quadratic Equation

117743 \(\frac{\left(\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}\right)^8}{\left(\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}\right)^8}\)

1 -1
2 0
3 1
4 \(2 \mathrm{i}\)
Complex Numbers and Quadratic Equation

117739 The locus of the point \(z=x+\) iy satisfying \(\left|\frac{\mathbf{z}-\mathbf{2 i}}{\mathbf{z}+2 \mathbf{i}}\right|=1\) is

1 \(x\)-axis
2 \(y\)-axis
3 \(y=2\)
4 \(x=2\)
Complex Numbers and Quadratic Equation

117740 For \(z \neq i\), define \(\omega=\frac{z+i}{z-i}\), then \(|\omega|\lt 1\) implies that

1 \(\operatorname{Re} z>0\)
2 \(\operatorname{Re} z=0\)
3 \(\operatorname{Im} z=0\)
4 \(\operatorname{Im} z\lt 0\)
Complex Numbers and Quadratic Equation

117741 If a complex number \(z\) satisfies \(\left|z^2-1\right|=|z|^2+1\), then \(\mathrm{z}\) lies on

1 The real axis
2 The imaginary axis
3 \(y=x\)
4 a circle
Complex Numbers and Quadratic Equation

117742 If a is a complex number and \(b\) is a real number then the equation \(\bar{a}+\mathbf{a}+\mathbf{b}=\mathbf{0}\) represents a

1 straight line
2 parabola
3 circle
4 hyperbola
Complex Numbers and Quadratic Equation

117743 \(\frac{\left(\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}\right)^8}{\left(\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}\right)^8}\)

1 -1
2 0
3 1
4 \(2 \mathrm{i}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

117739 The locus of the point \(z=x+\) iy satisfying \(\left|\frac{\mathbf{z}-\mathbf{2 i}}{\mathbf{z}+2 \mathbf{i}}\right|=1\) is

1 \(x\)-axis
2 \(y\)-axis
3 \(y=2\)
4 \(x=2\)
Complex Numbers and Quadratic Equation

117740 For \(z \neq i\), define \(\omega=\frac{z+i}{z-i}\), then \(|\omega|\lt 1\) implies that

1 \(\operatorname{Re} z>0\)
2 \(\operatorname{Re} z=0\)
3 \(\operatorname{Im} z=0\)
4 \(\operatorname{Im} z\lt 0\)
Complex Numbers and Quadratic Equation

117741 If a complex number \(z\) satisfies \(\left|z^2-1\right|=|z|^2+1\), then \(\mathrm{z}\) lies on

1 The real axis
2 The imaginary axis
3 \(y=x\)
4 a circle
Complex Numbers and Quadratic Equation

117742 If a is a complex number and \(b\) is a real number then the equation \(\bar{a}+\mathbf{a}+\mathbf{b}=\mathbf{0}\) represents a

1 straight line
2 parabola
3 circle
4 hyperbola
Complex Numbers and Quadratic Equation

117743 \(\frac{\left(\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}\right)^8}{\left(\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}\right)^8}\)

1 -1
2 0
3 1
4 \(2 \mathrm{i}\)
Complex Numbers and Quadratic Equation

117739 The locus of the point \(z=x+\) iy satisfying \(\left|\frac{\mathbf{z}-\mathbf{2 i}}{\mathbf{z}+2 \mathbf{i}}\right|=1\) is

1 \(x\)-axis
2 \(y\)-axis
3 \(y=2\)
4 \(x=2\)
Complex Numbers and Quadratic Equation

117740 For \(z \neq i\), define \(\omega=\frac{z+i}{z-i}\), then \(|\omega|\lt 1\) implies that

1 \(\operatorname{Re} z>0\)
2 \(\operatorname{Re} z=0\)
3 \(\operatorname{Im} z=0\)
4 \(\operatorname{Im} z\lt 0\)
Complex Numbers and Quadratic Equation

117741 If a complex number \(z\) satisfies \(\left|z^2-1\right|=|z|^2+1\), then \(\mathrm{z}\) lies on

1 The real axis
2 The imaginary axis
3 \(y=x\)
4 a circle
Complex Numbers and Quadratic Equation

117742 If a is a complex number and \(b\) is a real number then the equation \(\bar{a}+\mathbf{a}+\mathbf{b}=\mathbf{0}\) represents a

1 straight line
2 parabola
3 circle
4 hyperbola
Complex Numbers and Quadratic Equation

117743 \(\frac{\left(\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}\right)^8}{\left(\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}\right)^8}\)

1 -1
2 0
3 1
4 \(2 \mathrm{i}\)